Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kirigaya Kazuto
Xem chi tiết
Isolde Moria
22 tháng 11 2016 lúc 18:38

Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ

\(\Rightarrow2n+1=1\left(mod8\right)\)

=> n \(⋮\) 4

=> n chẵn

=> n+1 cũng là số lẻ

\(\Rightarrow n+1=1\left(mod8\right)\)

=> n \(⋮\) 8

Mặt khác :

\(3n+2=2\left(mod3\right)\)

\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)

Mà n+1 và 2n+1 là các số chính phương lẻ

\(\Rightarrow n+1=2n+1=1\left(mod3\right)\)

=> n chia hết cho 3

Mà ( 3 ; 8 ) = 1

=> n chia hết cho 24

Dương
22 tháng 11 2016 lúc 19:13

Vì n + 1 và 2n + 1 đêu là phân số chính phương nên đặt n+1 = k\(^2\), 2n+1 = m\(^2\)( k, m \(\in\) N)

Ta có m là số lẻ => m = 2a+1 =>m\(^2\)= 4a(a+1)+1

=>n=\(\frac{m^2-1}{2}\)=\(\frac{4a\left(a+1\right)}{2}\)=2a(a+1)

=> n chẵn =>n+1 là số lẻ =>k lẻ =>Đặt k = 2b+1 (Với b \(\in\) N) =>k\(^2\)=4b(b+1)+1

=> n=4b(b+1) =>n \(⋮\)8 (1)

Ta có k\(^2\) + m\(^2\) =3n+2=2 ( mod3)

Mặt khác k\(^2\) chia 3 dư 0 hoặc 1 ,m\(^2\)chia 3 dư 0 hoặc 1

Nên để k\(^2\)+m\(^2\) =2 (mod3) thì k\(^2\) = 1(mod3)

m\(^2\) = 1 (mod3)

=>m\(^2\)-k\(^2\)\(⋮\)3 hay (2n+1)-(n+1) \(⋮\)3 =>n \(⋮\) 3

Mà (8;3)=1

Từ (1) ; (2) và (3) => n \(⋮\) 24

Nguyễn Thị Ngọc Hà
20 tháng 3 2017 lúc 15:06

mod3

Yukki Asuna
Xem chi tiết
Đen đủi mất cái nik
21 tháng 4 2017 lúc 13:01

Ai làm jup vs ạ

Nguyễn Kim Huệ
27 tháng 4 2017 lúc 17:23

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)

Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24

Le Trinh
17 tháng 12 2018 lúc 20:06

cuộc đời sao lắm dèm pha 

đi đâu cũng gặp lâu la thế này

Trần Tiến Đạt
Xem chi tiết
Ħäńᾑïě🧡♏
12 tháng 7 2021 lúc 20:38

Tham khảo:

,m. /kl;
14 tháng 12 2023 lúc 21:07

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)

Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

truong nhat  linh
Xem chi tiết
Nguyễn thị khánh hòa
Xem chi tiết
Đào Trọng Luân
7 tháng 6 2017 lúc 16:59

Giả sử: n+1=a2

2n+1=b2

Vì 2n+1 lẻ

=> b2:8 dư 1

=> 2n \(⋮\)8

=> n chẵn

=> a2:8 dư 1

=> n

Đào Trọng Luân
7 tháng 6 2017 lúc 17:05

GS: n+1= a2

2n+1=b2

=>2n chia hết cho 8

=> n chẵn

=> a2 chia 8 dư 1

=> n chia hết cho 8

a2+b2=3n+2

Vì số chính phương chia 3 dư 0 hoặc 1

Mà 3n+2 chia 3 dư 2

=> b2 và a2 chia 3 dư 1

=> n chia hết cho 3

Mà [3,8]=1=> n chia hết cho 24

damthivananh
17 tháng 1 2018 lúc 19:24

tui chưa học

kirigaza kazuto
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 23:36

Lời giải:

Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.

Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$

$\Rightarrow 2n\vdots 4$

$\Rightarrow n\vdots 2$

$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$

$\Rightarrow n\vdots 8(1)$

Mặt khác:

Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)

Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)

Do đó $n$ chia hết cho $3(2)$ 

Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)

Nguyễn Thị Khánh Hiền
6 tháng 1 2021 lúc 16:13

Vì 2n+1 là số chính phương lẻ nên 

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

Trịnh Văn Đại
Xem chi tiết
Nguyễn Kim Huệ
27 tháng 4 2017 lúc 17:18

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)

Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

Đức Lộc
7 tháng 4 2019 lúc 15:46

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

cô bé thì sao nào 992003
Xem chi tiết
Hoàng Lê Bảo Ngọc
6 tháng 7 2016 lúc 23:54

Giả sử \(n+1=a^2\) ; \(2n+1=b^2\) \(\left(a,b\in N^{\text{*}}\right)\)

Ta có b là số lẻ \(\Leftrightarrow b=2m+1\Rightarrow b^2=4m\left(m+1\right)+1\Rightarrow n=2m\left(m+1\right)\)

=> n chẵn => n + 1 lẻ => a lẻ => a = 2k+1 =>  \(n+1=\left(2k+1\right)^2=4k\left(k+1\right)+1\Rightarrow n=4k\left(k+1\right)⋮8\)

Vậy n chia hết cho 8

Ta có : \(a^2+b^2=3n+2\equiv2\)(mod 3)

Mặt khác : \(b^2\)chia 3 dư 0 hoặc 1 , \(a^2\)chia 3 dư 0 hoặc 1

=> Để \(a^2+b^2\equiv2\)(mod 3) thì \(a^2\equiv1\)(mod 3) và \(b^2\equiv1\)(mod 3)

\(\Rightarrow b^2-a^2\)chia hết cho 3

Ta có : n = (2n + 1) - (n + 1) = \(b^2-a^2\)chia hết cho 3

Như vậy  \(n⋮3,n⋮8\) mà (3,8) = 1 

=> \(n⋮24\)

nguyen minh duc
7 tháng 7 2016 lúc 10:17

bằng 1 nhé100% là đúng

k cho mình nha 

Tobot Z
Xem chi tiết
Đặng Viết Thái
26 tháng 3 2019 lúc 12:33

Vì 2n+1 là số chính phương lẻ nên

2n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)

Do đó: n⋮3

Vậy ta có đpcm.

Aug.21
26 tháng 3 2019 lúc 12:35

Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24

Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ

⇒2n+1=1(mod8)⇒2n+1=1(mod8)

=> n ⋮⋮ 4

=> n chẵn

=> n+1 cũng là số lẻ

⇒n+1=1(mod8)⇒n+1=1(mod8)

=> n ⋮⋮ 8

Mặt khác :

3n+2=2(mod3)3n+2=2(mod3)

⇒(n+1)+(2n+1)=2(mod3)⇒(n+1)+(2n+1)=2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ

⇒n+1=2n+1=1(mod3)⇒n+1=2n+1=1(mod3)

=> n chia hết cho 3

Mà ( 3 ; 8 ) = 1

=> n chia hết cho 24

 Bạn tham khảo: !!!

TF girls
26 tháng 3 2019 lúc 12:43

Vì 2n-1 là số chính phương. Mà 2n-1 lẻ

\(\Rightarrow2n+1=1\left(mod8\right)\)

\(\Rightarrow n⋮4\)

\(\Rightarrow\)n chẵn

\(\Rightarrow n+1\)lẻ

\(\Rightarrow n+1=1\left(mod8\right)\)

\(\Rightarrow n⋮8\)

  Mặt khác

\(3n+2=2\left(mod3\right)\)

\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)

Mà n+1 và 2n+1 đều là các số chính phương lẻ

\(\Rightarrow n\text{+}1=2n\text{+}1=1\left(mod3\right)\)

\(\Rightarrow n⋮3\)

    Mà (3:8)=1

\(\Rightarrow n⋮24\)