cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
tính \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
a+b+c = 2010 => a+b=2010-c ; b+c=2010-a ; c+a=2010-b
=> S = a/2010-a + b/2010-b + c/2010-c = 2010/2010-a - 1 + 2010/2010-b -1 + 2010/2010-c - 1
= 2010/b+c - 1 + 2010/c+a - 1 + 2010/a+b - 1
= 2010.(1/b+c + 1/c+a + 1/a+b) - 3
= 2010.1/3 - 3 = 667
Vậy S = 667
Tk mk nha
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2010\cdot\frac{1}{3}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2010}{3}\)
\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2010}{3}\)
\(\Rightarrow S+3=\frac{2010}{3}\)
\(\Rightarrow S=\frac{2010}{3}-3=\frac{2001}{3}=667\)
Ta có \(S+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
=\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=\frac{2010}{3}=670\)
\(\Rightarrow S=667\)
cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
\(\Rightarrow\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(a+b+c\right)=\left(a+b+c\right)\frac{1}{3}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2010}{3}\)
\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)=\frac{2010}{3}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2010}{3}-1-1-1\)
\(\Rightarrow S=667\)
Cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a,b,c>0 và abc=1. CM \(\frac{1}{a^{2010}+b^{2010}+1}+\frac{1}{b^{2010}+c^{2010}+1}+\frac{1}{c^{2010}+a^{2010}+1}\le1\)
Cho a + b + c = 2010 và \(\frac{1}{a+b}\) + \(\frac{1}{b+c}\) + \(\frac{1}{c+a}\) = \(\frac{1}{3}\). Tính S = \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2010.\frac{1}{3}\)
Mà \(\left(a+b+c\right).\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\)
\(=1+\frac{c}{a+b}+\frac{a}{b+c}+1+\frac{b}{c+a}+1=3+S\)
=> \(S=\frac{2010}{3}-3=\frac{2001}{3}\)
1) \(Cho\frac{a}{b}=\frac{b}{c}=\frac{c}{2010}=\frac{2010}{a}\)
và \(a+b+c\ne2010\)
Tính a+b+c
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{2010}=\frac{2010}{a}=\frac{a+b+c+2010}{b+c+2010+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=2010\end{cases}}\Leftrightarrow a=b=c=2010\)
Vậy a + b + c = 2010 . 3 = 6030
Bài 1: Tìm số tự nhiên n để phân số \(\frac{7n-8}{2n-3}\)có GTLN.
Bài 2: Tìm x, biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\).
Bài 3: Cho a+b+c=2010 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\).
Tính S=\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Cho a+b+c=2010 và \(\frac{1}{a+b}\)+ \(\frac{1}{b+c}\)+\(\frac{1}{c+a}\)=\(\frac{1}{10}\)
Tính giá trị biểu thức: A=\(\frac{a}{b+c}\)+\(\frac{b}{c+a}\)+\(\frac{c}{a+b}\)
Từ a+b+c=2010
\(\Rightarrow\)a= 2010-(b+c)
\(\Rightarrow\)b= 2010-(c+a)
\(\Rightarrow\)c= 2010-(a+b)
Thay vào A, ta được:
A=\(\frac{2010-\left(b+c\right)}{b+c}\)+ \(\frac{2010-\left(c+a\right)}{c+a}\) + \(\frac{2010-\left(a+b\right)}{a+b}\)
A= \(\frac{2010}{b+c}\)+ \(\frac{2010}{c+a}\)+\(\frac{2010}{a+b}\)- 3
A= 2010( \(\frac{1}{b+c}\)+\(\frac{1}{c+a}\)+\(\frac{1}{a+b}\) ) -3
A= 2010. \(\frac{1}{10}\)-3
A=201-3
A= 198
Vậy A=198