chung minh moi n thuoc N thi so (n+2011^2012)(n+2012^2011)+1 la so lẻ
\(N=\sqrt{1+2011^2+\frac{2011^2}{2012^2}+\frac{2011}{2012}}\)CMR : N la so tu nhien
\(N=\sqrt{1+2011^2+\frac{2011^2}{2012^2}+\frac{2012.2011}{ }}kolàsốtựnhieen\)
xem lại đề
a,So sánh M và N bằng cách thuận tiện nhất
M = 2010/2011 + 2011/2012 và N = 2010 + 2011/2011+2012
b,So sánh P =2011 x 2012 - 2 / 2010x2011+4020
tìm cách thuận tiên để so sánh M và N biết;
M=2010/2011+2011/2012 và N=2010+2011/2011+2012
Tìm cách thuận tiện nhất để so sánh M và N biết m = 2010 /2011 + 2011 / 2012 n bang 2010 +2011 /2011 + 2012
N=\(\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
M=\(\frac{2010}{2011}+\frac{2011}{2012}\)
ta có \(\frac{2010}{2011+2012}< \frac{2010}{2011}\)
\(\frac{2011}{2011+2012}< \frac{2011}{2012}\)
-> N<M
cho p là số nguyên tố lớn hơn 3 va n thuoc n*. chung minh rang a = 3n+2+2011. p^2 la hop so
p là số nguyên tố > 3 nên p chia 3 dư 1 hoặc dư 2
+Nếu p chia 3 dư 1 => \(p^2\)chia 3 dư 1\(\Rightarrow2011p^2\)chia 3 dư 1\(\Rightarrow2011p^2+2\) chia hết cho 3.
Mà 3n chia hết cho 3
=> a chia hết cho 3 => a là hợp số (do a > 3)
+Nếu p chia 3 dư 2 => p2 chia 3 dư 1 => 2011p2 chia 3 dư 1 => 2011p2 + 2 chia hết cho 3
Mà 3n chia hết cho 3
=> A chia hết cho 3 => A là hợp số (do a > 3)
\(\text{Vậy a là hợp số.}\)
bài 1:so sánh
A=2010/2011+2011/2012 và B=2010+2011/2011+2012
bài 2:tìm số tự nhiên n để n+1/n-1 là số tự nhiên
MÌNH CẦN GẤP AI TRẢ LỜI ĐÚNG MÌNH LIKE
Bài 1 :
Ta có :
\(B=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)
Vì :
\(\frac{2010}{2011}>\frac{2010}{2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012}\)
Nên : \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)
Vậy \(A>B\)
Bài 2 :
\(\frac{n+1}{n-1}=\frac{n-1+2}{n-1}=\frac{n-1}{n-1}+\frac{2}{n-1}=1+\frac{2}{n-1}\)
\(\Rightarrow\)\(2⋮\left(n-1\right)\)
\(\Rightarrow\)\(\left(n-1\right)\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)
Suy ra :
\(n-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(n\) | \(2\) | \(0\) | \(3\) | \(-1\) |
Vì n là số tự nhiên nên \(n\in\left\{0;2;3\right\}\)
Vậy \(n\in\left\{0;2;3\right\}\)
So sánh giá trị biểu thức bằng cách thuận tiện:
M = 2010/2011 + 2011/2012 và N = 2010+2011/2011+2012
So sánh P và Q biết : P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010+2011+2012/ 2011 +2012+2013
Chứng tỏ N < 1 với N = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}
So sánh M với N
M=-7/10^2011+-15/10^2012
N=-15/10^2011+-8/10^2012