Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ank viet
Xem chi tiết
Nguyễn Anh Duy
8 tháng 11 2016 lúc 19:57

\(A=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)

\(=\left(1-\frac{\left(x+y\right)^2}{x^2}\right)\left(1-\frac{\left(x+y\right)^2}{y^2}\right)\\ =...\)

\(=\frac{-2xy-y^2}{x^2}.\frac{-2xy-x^2}{y^2}\)

\(=\frac{-y\left(2x+y\right)}{x^2}.\frac{-x\left(2x+x\right)}{y^2}\)

\(=\frac{\left(2x+y\right)\left(2y+x\right)}{xy}\)

\(=\frac{\left(x+x+y\right)\left(y+y+x\right)}{xy}\)

\(_{\ge}^{AM-GM}\frac{3\sqrt[3]{x.x.y}.3\sqrt[3]{y.y.x}}{xy}\)

\(=\frac{9xy}{xy}=9\)

Vậy \(A_{min}=9\Leftrightarrow x=y=\frac{1}{2}\)

Nguyễn Thiều Công Thành
Xem chi tiết
alibaba nguyễn
30 tháng 12 2016 lúc 9:28

Ta có

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z+1\right)^2\ge0\end{cases}}\)và \(\hept{\begin{cases}x^2+1>0\\y^2+1>0\\z^2+1>0\end{cases}}\)

\(\Rightarrow A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\ge0\)

Kết hợp với điều kiện ban đầu thì

GTNN của A là 0 đạt được khi 

\(\left(x,y,z\right)=\left(-1,-1,5;-1,5,-1;5,-1-1\right)\)

Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Thắng Nguyễn
25 tháng 7 2017 lúc 11:30

bài này cần x,y,z>0 nữa, vừa xem xong bài y hệt của LCC :v

Dự đoán dấu "=" khi \(x=y=z=1\) thì \(P=24\)

Ta chứng minh P=24 là GTNN

Thật vậy áp dụng BĐT C-S ta có:

\(P=Σ\frac{\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2}{\left(z^2+1\right)\left(x+y\right)^2}\ge\frac{\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2}{Σ\left(z^2+1\right)\left(x+y\right)^2}\)

Cần chứng minh: \(\frac{\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2}{Σ\left(z^2+1\right)\left(x+y\right)^2}\ge24\)

\(\Leftrightarrow\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2\ge24Σ\left(z^2+1\right)\left(x+y\right)^2\)

Đặt \(\hept{\begin{cases}x+y+z=3u\\xy+yz+xz=3v^2\\xyz=w^3\end{cases}}\) \(\Rightarrow u=1\) thì

\(Σ\left(x+1\right)\left(y+1\right)\left(z+1\right)=Σ\left(x^2y+x^2z+2x^2+2xy+2x\right)\)

\(=9uv^2-3w^3+2u\left(9u^2-6v^2\right)+9uv^2+6u^3=3\left(8u^3+uv^2-w^3\right)\)

Và  \(Σ\left(z^2+1\right)\left(x+y\right)^2=2Σ\left(x^2y^2+x^2yz+x^2u+xyu^2\right)\)

\(=2\left(9v^4-6uw^3+3uw^3+9u^4-6u^2v^2+3u^2v^2\right)\)

\(=6\left(3u^4-u^2v^2+3v^4-uw^3\right)\). Can cm \(f\left(w^3\right)\ge0\)

\(f\left(w^3\right)=\left(8u^3+uv^2-w^3\right)^2-16\left(3u^6-u^4v^2+3u^2v^4-u^3w^3\right)\)

\(f'\left(w^3\right)=-2\left(8u^3+uv^2-w^3\right)+16u^3=2w^3-2uv^2\le0\)

Thay \(f\) la ham` ngh!ch bien, do đó, BĐT có 1 GTLN của w3 khi 2 biến bằng nhau

Đặt \(y=x;z=3-2x\), Khi đó: 

\(BDT\Leftrightarrow\left(x-1\right)^2\left(x^4-2x^3-11x^2+24x+4\right)\ge0\)

Vo Trong Duy
Xem chi tiết
Hoàng Phúc
19 tháng 5 2017 lúc 16:34

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

Thắng Nguyễn
19 tháng 5 2017 lúc 17:54

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)

Hoàng Phúc
19 tháng 5 2017 lúc 20:30

x,y có dương đâu mà AM-GM rồi schwarz hay vậy Thắng ? 

Nguyễn Thị Ngọc Mai
Xem chi tiết
Nguyễn Phương Nga
Xem chi tiết
Nguyễn Bá Hùng
Xem chi tiết
Agatsuma Zenitsu
28 tháng 1 2020 lúc 11:58

Ta có: \(A=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\)

\(=1+\frac{1}{y}+x+\frac{x}{y}+1+\frac{1}{x}+y+\frac{y}{x}\)

\(=\left(x+\frac{1}{2x}\right)+\left(y+\frac{1}{2y}\right)+\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)+2\)

Lại có: \(x,y\in Z^+\) nên ta có:

\(x+\frac{1}{2x}\ge\sqrt{2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{\sqrt{2}}\)

\(y+\frac{1}{2y}\ge\sqrt{2}\)

Dấu " = " xảy ra  \(\Leftrightarrow y=\frac{1}{\sqrt{2}}\)

\(\frac{x}{y}+\frac{y}{x}\ge2\)

Dấu " = " xảy ra \(\Leftrightarrow x=y\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\sqrt{x^2+y^2}}{2}}=2\sqrt{2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

Từ trên ta suy ra: \(A\ge3\sqrt{2}+4\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

Vậy \(A_{Min}=3\sqrt{2}+4\)

Khách vãng lai đã xóa
Nyatmax
28 tháng 1 2020 lúc 12:04

\(A=\left(x+y\right)+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)+2\ge x+y+\frac{4}{x+y}+4\)

\(\Rightarrow A\ge\left(x+y+\frac{2}{x+y}\right)+\frac{2}{x+y}+4\ge2\sqrt{2}+4+\frac{2}{\sqrt{2\left(x^2+y^2\right)}}=3\sqrt{2}+4\)

Khách vãng lai đã xóa
Đinh Thị Ngọc Anh
Xem chi tiết