A = 2016 x y : 8
b1 cho a+2015/a-2015 = b+2016/b-2016 CMR a/b = 2015/2016
b2
b.x/y = 9/7; y/f = 3/7 và x-y+f = -15
c.x/y = 7/20; y/f = 5/8 và 2x + 5y - 2f = 100
Bài 2 :
b) x/y = 9/7 => x/9 = y/7 => x/27 = y/21 (1)
y/f = 3/7 => y/3 = f/7 => y/21 = f/49 (2)
Từ (1) và (2) => x/27 = y/21 = f/49
Áp dụng t/c của dãy tỉ số bằng nhau:
(tự làm)
c) x/y = 7/20 => x/7 = y/20 (1)
y/f= 5/8 => y/5 = f/8 => y/20 = f/32 (2)
Từ (1) và (2) => x/7 = y/20 = f/32
=> 2x/14 = 5y /100 = 2f/64
Áp dụng t/c của dãy tỉ số bằng nhau:
(phần còn lại......tự xử)
cho x^2/a^2 + y^2/b^2 + z^2/c^2 =x^2+y^2+z^2/a^2+b^2+c^2
CMR x^2016/a^2016 + y^2016/b^2016 +z^2016/c^2016 = x^2016+y^2016+z^2016/a^2016+b^2016+c^2016
Cho a, b, c, khác 0. Tính giá trị biểu thức :\(A=x^{2017}+y^{2017}+z^{2017}\)
biết x,y,z thỏa mãn:
\(\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
Tìm z,y
a, (x-2)2016 + I y2 - 9I2017 = 0
b,25 - y2 = 8.(x - 2016)2 (x,y thuộc Z)
c, x - xy + y = 10 (x;y thuộc Z)
Cho \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\).Chứng minh \(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}+\frac{z^{2016}}{c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\)
Cho biểu thức A = 2016 : y x 8
Tìm y để biểu thức A có giá trị lớn nhất
cho a+b=x+y
a^2+b^2=x^2+y^2
CMR x^2016+y^2016=a^2016+b^2016
cho a+b= x+y
a^2 +b ^2= x^2+y^2
CMR: a^2016+b^2016= x^2016+y^2016
Cho 3 số x,y,z thỏa mãn : x/2016 = y/2017 = z/2018
a CMR : (x-z)^2 = 8(x-y) (y-z)
b Cho biết x/24 + y/4 = z/2018 . Tính x,y,z ?
Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên