Tìm hai số hữu tỉ a và b biết rằng:a-b=2(a+b)=3\(\frac{a}{b}\)
Tìm hai số hữu tỉ a và b biết rằng : a-b=2(a+b)=\(3.\frac{a}{b}\)
Ta có:
a - b = 2(a + b)
=> a - b = 2a + 2b
=> a - 2a = 2b + b
=> -a = 3b
\(\Rightarrow\frac{a}{b}=-3\); \(a=-3b\)
Laị có:
a - b = \(3.\frac{a}{b}\)
=> -3b - b = 3.(-3)
=> -4b = -9
\(\Rightarrow b=\frac{-9}{-4}=\frac{9}{4}\)
\(\Rightarrow a=\frac{9}{4}.\left(-3\right)=\frac{-27}{4}\)
Vậy \(a=\frac{-27}{4};b=\frac{9}{4}\)
Tìm hai số hữu tỉ a và b biết rằng : a-b=2(a+b)=3/a/b
bạn chưa học lớp 7 thì bạn hỏi làm gì
Cho hai số hữu tỉ a và b thỏa mãn: a - b = 2 (a + b ) = \(\frac{a}{b}\)
1. Chứng minh a = -3b
2. Tính tỉ số \(\frac{a}{b}\)
3. Tìm a và b
Tìm hai số hữu tỉ biết rằng: \(a-b=\frac{a}{b}\)và \(a-b=2\left(a+b\right)\).
Từ a - b = 2a + 2b => a = -3b hay \(\frac{a}{b}=-3\) hay a + b = -1,5
=> \(\hept{\begin{cases}a-b=-3\\a+b=-1,5\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{-3-1,5}{2}=-2,25\\b=-1,5+2,25=0,75\end{cases}}}\)
Vậy...
Tìm hai số hữu tỉ a và b biết: a - b = a/b và a - b = 3( a + b )
a - b = 3(a + b) => a - b = 3a + 3b => a - 3a = b + 3b => -2a = 4b
=> a/b = 4/-2 = -2 => a = -2b
Mà a - b = a/b = -2
=> -2b - b = -2 => -3b = -2 => b = 2/3 => a = (-2). 2/3 = -4/3
Vậy a = -4/3 và b = 2/3
1. Có tồn tại hay không hai số dương thỏa mãn:
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
2. Cho hai số hữu tỉ a và b thỏa mãn: a - b = 2( a + b ) =.\(\frac{a}{b}\) Chứng minh a = - 3b.
3. Cho hai số hữu tỉ a và b thỏa a + b = ab = \(\frac{a}{b}\)
1/Chứng minh \(\frac{a}{b}\) = a - 1
2/Chứng minh b = -1
3/Tìm a
bài 1:
tìm 2 số hữu tỉ a và b biết a+b=a nhân b=a/b
bài2
tìm 2 số nguyên x và y biết:
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Bài 1: Ta có:
a + b = a.b => a = a.b - b = b.(a - 1) (1)
=> a : b = a - 1 = a + b
=> b = -1
Thay b = -1 vào (1) ta có: a = -1.(a - 1) = -a + 1
=> a + a = 1 = 2a
\(\Rightarrow a=\frac{1}{2}\)
Vậy \(a=\frac{1}{2};b=-1\)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
=> (1 - 2y).x = 40
\(\Rightarrow40⋮1-2y\)
Mà 1 - 2y là số lẻ \(\Rightarrow1-2y\in\left\{1;-1;5;-5\right\}\)
Ta có bảng sau:
1 - 2y | 1 | -1 | 5 | -5 |
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (40;0) ; (-40;1) ; (8;-2) ; (-8;3)
Cho hai số hữu tỉ a và b thỏa a + b = ab = \(\frac{a}{b}\)
1. Chứng minh \(\frac{a}{b}\)= a -1
2. Chứng minh b = -1
3. Tìm a
1) a/b = a - 1. vì a+ b= ab
( ab-a) - 1= 0
a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
=> b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý)
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
3) => 2a = 1 => a= 1/2
2) khi đó : a/b = 1/2 : (-1) = -1/2
a-1 = 1/2 -1 = -1/2
=> a/b = a-1 ( đpcm)
vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi
Cho hai số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\)(a,b,c,d ϵ Z, b,d ≠ 0) Chứng tỏ rằng:
a, Nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc
b, Nếu ad < bc thì \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)