Tìm nguyên hàm:
\(\int\dfrac{sin2x}{\left(2+sinx\right)^2}dx\)
Tính nguyên hàm các hàm số sau:
1. \(I=\int\dfrac{cos^2x}{sin^8x}dx\)
2. \(I=\int\left(e^{sinx}+cosx\right)cosxdx\)
1.
\(I=\int\dfrac{cot^2x}{sin^6x}dx=\int\dfrac{cot^2x}{sin^4x}.\dfrac{1}{sin^2x}=\int cot^2x\left(1+cot^2x\right)^2.\dfrac{1}{sin^2x}dx\)
Đặt \(u=cotx\Rightarrow du=-\dfrac{1}{sin^2x}dx\)
\(I=-\int u^2\left(1+u^2\right)^2du=-\int\left(u^6+2u^4+u^2\right)du\)
\(=-\dfrac{1}{7}u^7+\dfrac{2}{5}u^5+\dfrac{1}{3}u^3+C\)
\(=-\dfrac{1}{7}cot^7x+\dfrac{2}{5}cot^5x+\dfrac{1}{3}cot^3x+C\)
2.
\(I=\int\left(e^{sinx}+cosx\right).cosxdx=\int e^{sinx}.cosxdx+\int cos^2xdx\)
\(=\int e^{sinx}.d\left(sinx\right)+\dfrac{1}{2}\int\left(1+cos2x\right)dx\)
\(=e^{sinx}+\dfrac{1}{2}x+\dfrac{1}{4}sin2x+C\)
Cho hàm số f(x) liên tục trên \([-\Pi;\Pi]\)
Chứng minh: \(\int\limits^{\Pi}_0x.f\left(sinx\right)dx=\dfrac{\Pi}{2}\int\limits^{\Pi}_0f\left(sinx\right)dx\)
Tìm nguyên hàm của các hàm số sau:
a) \(\int\left(6x-\dfrac{1}{sin^2x}+1\right)dx\)
b) \(\int\dfrac{x^3+2x^2-1}{x^2}dx\)
1, \(\int\dfrac{x^3dx}{\left(x^8-4\right)^2}\)
2, \(\int\dfrac{2x+1}{x^4+2x^2+3x^2+2x-3}dx\)
3, \(\int\dfrac{sin\sqrt[3]{x}}{\sqrt[3]{x^2}}dx\)
4, \(\int\dfrac{dx}{sin^2x+2cos^2x}\)
5, \(\int\dfrac{sinx+cosx}{3+sin2x}dx\)
\(I=\int\dfrac{x^3dx}{\left(x^8-4\right)^2}\)
Đặt \(x^4=t\Rightarrow x^3dx=\dfrac{1}{4}dt\Rightarrow I=\dfrac{1}{4}\int\dfrac{dt}{\left(t^2-2\right)^2}=\dfrac{1}{4}\int\dfrac{dt}{\left(t-\sqrt{2}\right)^2\left(t+\sqrt{2}\right)^2}\)
\(=\dfrac{1}{32}\int\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)^2dt=\dfrac{1}{32}\int\left(\dfrac{1}{\left(t-\sqrt{2}\right)^2}+\dfrac{1}{\left(t+\sqrt{2}\right)^2}-\dfrac{2}{\left(t+\sqrt{2}\right)\left(t-\sqrt{2}\right)}\right)dt\)
\(=\dfrac{1}{32}\int\left(\dfrac{1}{\left(t-\sqrt{2}\right)^2}+\dfrac{1}{\left(t+\sqrt{2}\right)^2}-\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}\right)\right)dt\)
\(=\dfrac{1}{32}\left(\dfrac{-1}{t-\sqrt{2}}-\dfrac{1}{t+\sqrt{2}}-\dfrac{1}{\sqrt{2}}ln\left|\dfrac{t-\sqrt{2}}{t+\sqrt{2}}\right|\right)+C\)
\(=\dfrac{1}{32}\left(\dfrac{-1}{x^4-\sqrt{2}}-\dfrac{1}{x^4+\sqrt{2}}-\dfrac{1}{\sqrt{2}}ln\left|\dfrac{x^4-\sqrt{2}}{x^4+\sqrt{2}}\right|\right)+C\)
2/ \(I=\int\dfrac{\left(2x+1\right)dx}{\left(x^2+x-1\right)\left(x^2+x+3\right)}=\dfrac{1}{4}\int\left(\dfrac{1}{x^2+x-1}-\dfrac{1}{x^2+x+3}\right)\left(2x+1\right)dx\)
\(=\dfrac{1}{4}\int\left(\dfrac{2x+1}{x^2+x-1}-\dfrac{2x+1}{x^2+x+3}\right)dx\)
\(=\dfrac{1}{4}\left(\int\dfrac{d\left(x^2+x-1\right)}{x^2+x-1}-\int\dfrac{d\left(x^2+x+3\right)}{x^2+x+3}\right)\)
\(=\dfrac{1}{4}ln\left|\dfrac{x^2+x-1}{x^2+x+3}\right|+C\)
3/ Đặt \(\sqrt[3]{x}=t\Rightarrow x=t^3\Rightarrow dx=3t^2dt\)
\(\Rightarrow I=\int\dfrac{3t^2.sint.dt}{t^2}=3\int sint.dt=-3cost+C=-3cos\left(\sqrt[3]{x}\right)+C\)
4/ \(I=\int\dfrac{dx}{1+cos^2x}=\int\dfrac{\dfrac{1}{cos^2x}dx}{\dfrac{1}{cos^2x}+1}\)
Đặt \(t=tanx\Rightarrow\left\{{}\begin{matrix}dt=\dfrac{1}{cos^2x}dx\\\dfrac{1}{cos^2x}=1+tan^2x=1+t^2\end{matrix}\right.\)
\(\Rightarrow I=\int\dfrac{dt}{1+t^2+1}=\int\dfrac{dt}{t^2+2}=\dfrac{1}{2}\int\dfrac{dt}{\left(\dfrac{t}{\sqrt{2}}\right)^2+1}\)
\(=\dfrac{1}{2}.\sqrt{2}.arctan\left(\dfrac{t}{\sqrt{2}}\right)+C=\dfrac{1}{\sqrt{2}}arctan\left(\dfrac{tanx}{\sqrt{2}}\right)+C\)
5/ \(I=\int\dfrac{sinx+cosx}{4+2sinx.cosx-sin^2x-cos^2x}dx=\int\dfrac{sinx+cosx}{4-\left(sinx-cosx\right)^2}dx\)
Đặt \(sinx-cosx=t\Rightarrow\left(cosx+sinx\right)dx=dt\)
\(\Rightarrow I=\int\dfrac{dt}{4-t^2}=-\int\dfrac{dt}{\left(t-2\right)\left(t+2\right)}=\dfrac{1}{4}\int\left(\dfrac{1}{t+2}-\dfrac{1}{t-2}\right)dt\)
\(=\dfrac{1}{4}ln\left|\dfrac{t+2}{t-2}\right|+C=\dfrac{1}{4}ln\left|\dfrac{sinx-cosx+2}{sinx-cosx-2}\right|+C\)
Ơ bài 1 nhầm số 4 thành số 2 rồi, bạn sửa lại 1 chút nhé :D
Còn 1 cách làm khác nữa là lượng giác hóa
Đặt \(x^4=2sint\Rightarrow x^3dx=\dfrac{1}{2}cost.dt\)
\(\Rightarrow I=\dfrac{1}{2}\int\dfrac{cost.dt}{\left(4sin^2t-4\right)^2}=\dfrac{1}{32}\int\dfrac{cost.dt}{cos^4t}=\dfrac{1}{32}\int\dfrac{dt}{cos^3t}\)
Đặt \(\left\{{}\begin{matrix}u=\dfrac{1}{cost}\\dv=\dfrac{dt}{cos^2t}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{sint.dt}{cos^2t}\\v=tant\end{matrix}\right.\)
\(\Rightarrow32I=\dfrac{tant}{cost}-\int\dfrac{tant.sint.dt}{cos^2t}=\dfrac{sint}{cos^2t}-\int\dfrac{sin^2t.dt}{cos^3t}\)
\(=\dfrac{sint}{1-sin^2t}-\int\dfrac{1-cos^2t}{cos^3t}dt=\dfrac{sint}{1-sin^2t}-\int\dfrac{dt}{cos^3t}+\int\dfrac{1}{cosx}dx\)
Chú ý rằng \(\int\dfrac{dt}{cos^3t}=32I\)
\(\Rightarrow32I=\dfrac{sint}{1-sin^2t}-32I+\int\dfrac{cost.dt}{cos^2t}\)
\(\Rightarrow64I=\dfrac{sint}{1-sin^2t}-\int\dfrac{d\left(sint\right)}{sin^2t-1}=\dfrac{sint}{1-sin^2t}-\dfrac{1}{2}ln\left|\dfrac{sint-1}{sint+1}\right|+C\)
\(\Rightarrow I=\dfrac{1}{64}\left(\dfrac{2x^4}{4-x^8}-\dfrac{1}{2}ln\left|\dfrac{x^4-2}{x^4+2}\right|\right)+C\)
1) Tinh nguyen ham
a) A = \(\int\dfrac{x}{\sqrt{x+2}}.dx\) b) B = \(\int\dfrac{sinx+cosx}{\sqrt[3]{1-sin2x}}.dx\)
\(A=\int \frac{x}{\sqrt{x+2}}dx \\ = \int \frac{x+2-2}{\sqrt{x+2}}dx \\ = \int \sqrt{x+2}-2\frac{1}{\sqrt{x+2}}dx \\ = \frac{2}{3}(x+2)^{\frac{3}{2}}-4\sqrt{x+2}+C\)
\(B=\int \frac{sinx+cosx}{\sqrt[3]{1-sin2x}}dx \\ x=\frac{\pi}{4}-u, dx=-du \\ =- \int \frac{sin(\frac{\pi}{4}-u)+cos(\frac{\pi}{4}-u)}{\sqrt[3]{1-sin(\frac{\pi}{2}-2u)}}du \\ = - \int \frac{\frac{1}{\sqrt2}cosu+\frac{1}{\sqrt2}sinu+\frac{1}{\sqrt2}cosu-\frac{1}{\sqrt2}sinu}{\sqrt[3]{1-cos2u}}du \\ = -\int \frac{\frac{2}{\sqrt2}cosu}{\sqrt[3]{1-cos2u}}du \\ = -\sqrt2 \int \frac{cosu}{\sqrt[3]{1-cos^2u+sin^2u}}du \\ = -\sqrt2 \int \frac{cosu}{\sqrt[3]{2sin^2u}}du \\ v=sinu, dv=cosudu \\ = -\sqrt2 \int \frac{1}{\sqrt[3]{2v^2}}dv \\ = -\frac{\sqrt2}{\sqrt[3]2} \int v^{-\frac{2}{3}}dv \\ = -\frac{\sqrt2}{\sqrt[3]2} 3v^\frac{1}{3}+C \\ = -\frac{\sqrt2}{\sqrt[3]2} 3\sqrt[3]{sin(\frac{\pi}{4}-x)}+C \)
Tìm nguyên hàm của hàm số : \(\int\dfrac{x\ln\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}}dx\)
Lời giải:
Đặt \(u=\ln (x+\sqrt{x^2+1}); dv=\frac{1}{\sqrt{x^2+1}}dx\)
\(\Rightarrow du=\frac{dx}{\sqrt{x^2+1}}; v=\int \frac{x}{\sqrt{x^2+1}}dx=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{x^2+1}}=\sqrt{x^2+1}\)
\(\Rightarrow \int \frac{x\ln (x+\sqrt{x^2+1})}{\sqrt{x^2+1}}dx=\int udv=uv-vdu=\sqrt{x^2+1}\ln (x+\sqrt{x^2+1})-\int dx\)
\(=\sqrt{x^2+1}\ln (x+\sqrt{x^2+1})-x+C\)
1) Tìm nguyên hàm: \(\int\dfrac{dx}{\left(x-1\right)^3\sqrt{x^2+3x+1}}\)
2) Tính tích phân sau: \(\int_0^1\left\{\dfrac{1}{x}\right\}\left(\dfrac{x}{1-x}\right)dx\) (kí hiệu \(\left\{a\right\}\) là phần lẻ của số thực \(a\))
Tìm nguyên hàm:
a) \(\int\left(\dfrac{1}{u^3}+\dfrac{1}{u^2}+\dfrac{1}{u}\right)du\)
b) \(\int\left(\dfrac{1}{t-2}+\dfrac{3}{1-t}\right)dt\)
c) \(\int\left(\dfrac{1}{2-3x}+\dfrac{7}{1-4x}\right)dx\)
d) \(\int e^{5x-1}dx\)
Tìm nguyên hàm của hàm số f(x)=\(\int\dfrac{sinx+2cosx}{3cosx+sinx}dx\) bằng phương pháp đổi biến , giúp mình với ạ