Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thục Đoan
Xem chi tiết
Nguyễn Dung Huyền
Xem chi tiết
Kẻ Dấu Mặt
15 tháng 8 2018 lúc 11:48

\(\left|x-3,2\right|+\left|2x-\frac{1}{5}\right|=x+3.\)

ĐK : \(x+3\ge0\Leftrightarrow x\ge-3\)

Th1 : \(x-3,2+2x-\frac{1}{5}=x+3\)

\(x-3,2+2x=x+\frac{16}{5}\)

\(x+2x=x+\frac{32}{5}\)

\(2x=\frac{32}{5}\)

\(\Leftrightarrow x=3,2\)(tm)

\(x-3,2+2x-\frac{1}{5}=3-x\)

\(x-3,2+2x=3-x+\frac{1}{5}\)

\(x-3,2+2x=\frac{16}{5}-x\)

\(x+2x=\frac{16}{5}-x+3,2\)

\(x+2x=\frac{32}{5}-x\)

\(2x=\frac{32}{5}-x-x\)

\(2x=\frac{32}{5}-2x\)

\(4x=\frac{32}{5}\)

\(x=1,6\)(tm)

Vậy \(x=1,6\)hoặc \(x=3,2\)

vuong hien duc
Xem chi tiết
Tớ Đông Đặc ATSM
15 tháng 7 2018 lúc 21:33

Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà

c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1

<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006

<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0

=> x-2010=0 => x=2010

d, TH1 : cả hai cùng âm

=>> 2X-4 <O => X< 2 

Và 9-3x<0 =>> x> 3 

=>> loại 

Th2 cả hai cùng dương

2x-4>O => x>2 

Và 9-3x>O => x<3 

=>> 2<x<3 (tm)

Lê Vương Đạt
Xem chi tiết
trần gia bảo
26 tháng 2 2020 lúc 20:02

a)    \(A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

<=> \(A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}.\frac{x\left(x-1\right)}{x+1}\)

<=> \(A=\frac{x^2}{x-1}\)

b) \(|2x+1|=3\)

TH1: 2x+1=3 \(\left(x\ge\frac{-1}{2}\right)\)

    => x=1 (TM)

TH2: 2x+1=-3 \(\left(x< \frac{-1}{2}\right)\)

    => x=-2 (TM)

c)     \(A< 3\)

<=> \(\frac{x^2}{x-1}< 3\)

<=> \(\frac{x^2-3x+3}{x-1}< 0\)

 =>  \(x< 1\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 2 2020 lúc 20:07

\(A=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\left(x\ne0;x\ne1\right)\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{\left(x-1\right)\left(x+1\right)}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x^2-1}{x\left(x-1\right)}+\frac{x}{x\left(x-1\right)}+\frac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{x+1}{x\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x+1}=\frac{x^2}{x-1}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 2 2020 lúc 20:09

\(A=\frac{x^2}{x-1}\left(x\ne0;x\ne1\right)\)

\(|2x+1|=3\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=3\\2x+1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=2\\2x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\left(loại\right)\\x=-2\left(tm\right)\end{cases}}}\)

Thay x=-2 vào A, ta có: \(A=\frac{2^2}{2-1}=\frac{4}{1}=4\)

Vậy \(A=4\)khi \(|2x+1|=3\)

Khách vãng lai đã xóa
Trịnh Minh Hiếu
Xem chi tiết
Lê Hồ Trọng Tín
29 tháng 9 2019 lúc 19:05

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{-z+3}{-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{56-5}{9}\)\(=\frac{17}{3}\)

\(\Rightarrow x=\frac{37}{3},y=19,z=\frac{77}{3}\)

Hoàng Ninh
29 tháng 9 2019 lúc 19:10

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)\(2x+3y-z=56\)

\(\Leftrightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4};2x+3y-z=56\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{56-2-6+3}{9}=\frac{51}{9}=\frac{17}{3}\)

\(\Leftrightarrow x=\frac{37}{3};y=19;z=\frac{77}{3}\)

Vậy \(x=\frac{37}{3};y=19;z=\frac{77}{3}\)

kaka
Xem chi tiết
Nhật Hạ
5 tháng 8 2019 lúc 22:02

Ta có: 2x + 3y + 5z - 119 = 0

=>  2x + 3y + 5z = 119

 \(\frac{x+2}{3}=\frac{y+3}{5}=\frac{z-4}{7}\Leftrightarrow\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}=\frac{2x+4+3y+9+5z-20}{6+15+35}=\frac{119+4+9-20}{56}=\frac{112}{56}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x+2}{3}=2\\\frac{y+3}{5}=2\\\frac{z-4}{7}=2\end{cases}\Rightarrow}\hept{\begin{cases}x+2=6\\y+3=10\\z-4=14\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=7\\z=18\end{cases}}\)

Vậy...

Triệu Bảo Ngọc
Xem chi tiết
shi nit chi
6 tháng 11 2016 lúc 22:02

mk ko biết làm 

xin lỗi bn nhae

xin lỗi vì đã ko giúp được bn

chcus bn học gioi!

nhae@@@

hoang phuc
6 tháng 11 2016 lúc 22:06

mình không biết làm

tk nhé@@@@@@@@@@@@@@@@@@@@

LOL

hihi

Trương Minh Trọng
3 tháng 7 2017 lúc 16:47

a) ... \(=\frac{3\left(2x-1\right)+2x\left(3x+3\right)+2x^2+1}{2x\left(2x-1\right)}=\frac{6x-3+6x^2+6x+2x^2+1}{2x\left(2x-1\right)}\)

\(=\frac{8x^2+12x-2}{2x\left(2x-1\right)}=\frac{4x^2+6x-1}{x\left(2x-1\right)}\)(hình như hết đơn giản được rồi, kết quả tạm vậy bạn nhé!)

b) ... \(=\frac{x^3+2x+2x\left(x+1\right)+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^2+2x+1}{x^2-x+1}\)

c) ... \(=\frac{4\left(x-2\right)+2\left(x+2\right)-5x+6}{\left(x-2\right)\left(x+2\right)}=\frac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x-2}\)

Hồ Thị Phương Uyên
Xem chi tiết
alibaba nguyễn
6 tháng 9 2017 lúc 8:50

Giải tiêu biểu câu a nhé.

a/ \(5x\left(2x-7\right)+2x\left(8-5x\right)=5\)

\(\Leftrightarrow19x+5=0\)

\(\Leftrightarrow x=-\frac{5}{19}\)

cute39
5 tháng 9 2017 lúc 23:20

cần câu mấy

Hồ Thị Phương Uyên
5 tháng 9 2017 lúc 23:23

Câu mấy cũng được bạn, nếu chỉ có 1 câu thôi thì mình sẽ dựa vào câu đó rồi làm những câu khác, vì mình đang gấp nên giải được hết thì càng tốt, nếu giải được mong bạn ghi chi tiết ra giúp mình^^

Bùi Phúc Hoàng Linh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
21 tháng 9 2020 lúc 6:44

\(\hept{\begin{cases}\frac{4x}{5}=\frac{3y}{2}\\\frac{4y}{5}=\frac{5z}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}=\frac{y}{\frac{2}{3}}\\\frac{y}{\frac{5}{4}}=\frac{z}{\frac{3}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{5}{4}}\times\frac{1}{\frac{3}{2}}=\frac{y}{\frac{2}{3}}\times\frac{1}{\frac{3}{2}}\\\frac{y}{\frac{5}{4}}\times\frac{1}{\frac{4}{5}}=\frac{z}{\frac{3}{5}}\times\frac{1}{\frac{4}{5}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{\frac{15}{8}}=\frac{y}{1}\\\frac{y}{1}=\frac{z}{\frac{12}{25}}\end{cases}}\Rightarrow\frac{x}{\frac{15}{8}}=\frac{y}{1}=\frac{z}{\frac{12}{25}}\)

2x - 3y + 4z = 5, 34

=> \(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}\)và 2x - 3y + 4z = 5, 34

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{\frac{15}{4}}=\frac{3y}{3}=\frac{4z}{\frac{48}{25}}=\frac{2x-3y+4z}{\frac{15}{4}-3+\frac{48}{25}}=\frac{5,34}{\frac{267}{100}}=2\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot\frac{15}{8}=\frac{15}{4}\\y=2\cdot1=2\\z=2\cdot\frac{12}{25}=\frac{24}{25}\end{cases}}\)

Vậy ...

b) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)và 2x + 3y - z = 50

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)

\(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

\(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

\(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)

Vậy ...

Khách vãng lai đã xóa