Chứng tỏ rằng trong 3 STN liên tiếp luôn có 1 số chia hết cho 3
chứng tỏ rằng trong 2 STN liên tiếp luôn có 1 số chia hết cho 2
Gọi 2 số là : a;a+1
+ Nếu a=2k => ĐPCM (1)
+ Nếu a=2k+1 thì a+1=2k+1+1=2k+2 chia hết cho 2 (2)
Từ (1) và (2) => trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chẵn mà số chẵn lại chia hết cho 2 nên 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2
hai số tự nhiên liên tiếp sẽ có một số chẵn và một số lẻ .mà số chẵn là số chia hết cho 2 vậy trong hai số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
a)chứng tỏ rằng tổng 3 stn liên tiếp là số chia hết cho 3
b)a)chứng tỏ rằng tổng 4 stn liên tiếp là số không chia hết cho 4
a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.
Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)
=3(a+1) \(⋮3\)(vì \(3⋮3\))
Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.
b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3
Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6
=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)
Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.
a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )
Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3
b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )
Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.
CHỨNG MINH RẰNG :
- hai số tự nhiên liên tiếp nguyên tố cùng nhau
- trong 3 stn liên tiếp luôn có 1 số chia hết cho 3
Chứng tỏ rằng( trình bày rõ ràng)
a) trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 1:
Chứng tỏ rằng:
a)Tổng của 3 STN liên tiếp là một số chia hết cho 3.
b)Tổng của 4 STN liên tiếp là một số không chia hêt cho 4.
Bài 2:
Chứng tỏ rằng số có dang aaa aaa bao giờ cũng chia hết cho 7.
Bài 3:
Chứng tỏ rằng:số có dạng abc abc bao giờ cũng chia hết cho 11.
Bài 4:
Chứng tỏ rằng lấy một số có 2 chữ số, cộng vơi số hồm hai chữ ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11.
Bài 1 :
a/ Gọi ba số tự nhiên liên tiếp là : \(a;\left(a+1\right);\left(a+2\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)=3.a+3⋮3\)
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b/ Gọi bốn số tự nhiên liên tiếp là : \(a;\left(a+1\right);\left(a+2\right);\left(a+3\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=a+a+1+a+2+a+3\)
\(=4a+6\)không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4
Bài 2 :
Ta có : \(\overline{aaaaaa}=\overline{a}.111111=\overline{a}.7.31746\)
Vậy \(\overline{aaaaaa}\)bao giờ cũng chia hết cho 7
Bài 3 :
Ta có \(\overline{abcabc}=\overline{abc}.\left(1000+\overline{abc}\right)=\overline{abc}.\left(1000+1\right)=\overline{abc}.1001=\overline{abc}.7.11.13⋮11\)
Vậy : \(\overline{abcabc}\)bao giờ cũng chia hết cho 11
Bài 4 :
Gọi hai số ấy là \(\overline{ab}\)và \(\overline{ba}\)
Ta có : \(\overline{ab}+\overline{ba}=\left(10.a+b.1\right)+\left(10.b+a.1\right)=11.a+b.11⋮11\)
\(\Rightarrow\overline{ab}+\overline{ba}\)
Vậy tổng của số có hai chữ số với số có hai chữ số đó viết theo thứ tự ngược lại luôn chia hết cho 11
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
chứng tỏ rằng
a) trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) trong ba STN liên tiếp , có một số chia hết cho 3
Chứng tỏ rằng:
a) Tổng của 3 STN liên tiếp là 1 số chia hết cho 3
b)Tổng của 4 STN liên tiếp là 1 số không chia hết cho 4
a, gọi 3stn có dạng là : k+1;k+2;k+3
ta có tổng của k+1;k+2;k+3= k+1+k+2+k+3=3k+6 chia hết cho 3 => đpcm
b, gọi 4 stn liên tiếp là; k+1;k+2;k+3;k+4
ta có tổng của k+1;k+2;k+3;k+4= k+1+k+2+k+3+k+4= 4k+ 10 ko chia hết cho 4=> đpcm
hung pham tien : đpcm là điều phải chứng minh