Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lỗ Thị Thanh Lan
Xem chi tiết
Ngô Văn Phương
17 tháng 12 2014 lúc 14:30

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

Nguyễn Minh Trí
10 tháng 6 2015 lúc 11:12

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

cc
17 tháng 7 2016 lúc 8:56

 Nguyễn Minh Trí giải kiểu j thế ?

Nguyễn Ngọc Diệp
Xem chi tiết
 Đào Xuân Thế Anh
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Khách vãng lai đã xóa
Phí Mạnh Huy
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Khách vãng lai đã xóa
Đỗ Hương Chi
26 tháng 11 2021 lúc 19:30

???????????????????
 

Khách vãng lai đã xóa
trần minh quân
Xem chi tiết
Hồ Thu Giang
21 tháng 10 2015 lúc 23:25

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

Hồ Thu Giang
21 tháng 10 2015 lúc 23:33

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

nguyễn ngọc anh
Xem chi tiết
cheayoung park
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 16:01

\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)

Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn

Do đó \(n\left(n+1\right)+1\) lẻ

Vậy \(n^2+n+1⋮̸4\)

Uzumaki Naruto
9 tháng 11 2021 lúc 16:01

a) chịu

b) n2 + n + 1= n3 + 1(ơ, n=1 đc mà)

Xem chi tiết

Do \(n⋮̸3\Rightarrow\orbr{\begin{cases}n=3k+1\\n=3k+2\end{cases}\left(k\inℤ\right)}\)

+) Với \(n=3k+1\) thì ta có :

\(n^2-1=\left(3k+1\right)^2-1=3k\left(3k+2\right)⋮3\)

+) Với \(n=3k+2\) thì ta có :

\(n^2-1=\left(3k+2\right)^2-1=3\left(k+1\right)\left(3k+1\right)⋮3\)

Vậy ta có điều phải chứng minh.

Khách vãng lai đã xóa
╰Nguyễn Trí Nghĩa (team...
19 tháng 2 2020 lúc 15:42

+)Theo bài n\(⋮̸\)3

=>n=3k+1 hoặc n=3k+2

*TH1:n=3k+1

=>n2-1=(3k+1)2-1=(3k+1).(3k+1)-1=9k2+3k+3k+1-1=3.(3k2+k+k)\(⋮\)3

*Th2:n=3k+2

=>n2-1=(3k+2)2-1=(3k+2).(3k+2)-1=9k2+6k+6k+4-1=9k2+6k+6k+3=3.(3k2+2k+2k+1)\(⋮\)3

Vậy với n không chia hết cho 3 thì n2-1 chia hết cho 3

Chúc bn học tốt 

Khách vãng lai đã xóa
T.Anh 2K7(siêu quậy)(тoá...
19 tháng 2 2020 lúc 15:48

Ta dùng tính chất sau:với mọi nko chia hết 3 thì n^2 chia 3 dư 1

Chúng minh:Ta có Vì n ko chia hết cho 3 nên 

\(\Rightarrow\orbr{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\left(k\inℤ\right)\)

TH1:n=3k+1

\(\Rightarrow n^2=\left(3k+1\right)^2=3k\left(3k+1\right)+\left(3k+1\right)\equiv1\left(mod3\right)\)

TH2:n=3k+1

\(\Rightarrow n^2=\left(3k+2\right)^2=3k\left(3k+2\right)+2\left(3k+2\right)=3k\left(3k+2\right)+2.3k+4\equiv1\left(mod3\right)\)

Suy ra điều phải chứng minh

Áp dụng vào bài trên ta có:Vì n ko chia hết cho 3 nên n^2 chia 3 dư 1 

Suy ra n^2-1 chia hết cho 3

Cách này lớp 8 nha:Dùng định lý Fermat nhỏ

Ta có:Theo định lý Fermat nhỏ thì \(n^{p-1}-1⋮p\)với p là số nguyên tố,n là số nguyên và (n,p)=1

Thay p=3 thì ta có:\(n^{3-1}-1⋮3\Rightarrow n^2-1⋮3\)

Mà n và 3 thỏa mãn định lý là (n,3)=1

Suy ra điều phải chứng minh

Khách vãng lai đã xóa
Nguyễn Trung Đức
Xem chi tiết
Bolbbalgan4
Xem chi tiết
dekisugi
13 tháng 8 2018 lúc 12:59

câu này cũng không khó nếu mình dùng cách chứng mình như sau

với n=0 ta luôn luôn có 9\(9^{0+1}=9\) không chia hết cho 2016

giả định với n=k ta có mệnh đề 9k+1 không chia hết cho 2016 đặt mệnh đề là A

TIẾP tục ta cần chứng minh với n=k+1 cũng không chia hết cho 2016

thật vậy  \(9^{k+1+1}=9A\)   

MÀ THEO dữ kiện với A Không chia hết cho 2016 9 không chia hết cho 2016

nên 9k+1+1 cũng không chia hết cho 2016

hay với mọi số tự nhiên n thì 9n+1  không chia hết cho 2016

Link Pro
Xem chi tiết
Link Pro
19 tháng 2 2016 lúc 13:34

Xin lỗi, mình nhầm phải là không chia hết cho 9.

Tran Khanh Linh
19 tháng 2 2016 lúc 13:36

Chia het cho may thi minh cung ko biet lam vi minh moi lop 5