2005 : 7 .2
So sánh :
a) A= 10/2^7+ 10/2^6
B= 11/2^7+9/2^6
b) A= -7/ 10^2005+ -15/ 10 ^2006
B= -15/10^2005 + -7/10^2006
Ta có \(A=\frac{10}{2^7}+\frac{10}{2^6}=\frac{5}{2^6}+\frac{10}{2^6}=\frac{15}{2^6}\)
Lại có B = \(\frac{11}{2^7}+\frac{9}{2^6}=\frac{5,5}{2^6}+\frac{9}{2^6}=\frac{14,5}{2^6}\)
Vì \(\frac{15}{2^6}>\frac{14,5}{2^6}\Rightarrow A>B\)
b) Ta có : \(A=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-70}{10^{2006}}+\frac{-15}{10^{2006}}=\frac{-85}{10^{2006}}\)
Lại có B = \(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}=\frac{-150}{10^{2006}}+\frac{-7}{10^{2006}}=\frac{-157}{10^{2006}}\)
Vì \(\frac{-85}{10^{2006}}>\frac{-157}{10^{2006}}\Rightarrow A< B\)
A=1-3+5-7+...+2001-2003+2005
B=1-2-3+4+5-6-7+8+...+1993-1994
C=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006
A=1-3+5-7+....+2001-2003+2005
A=[(1-3)+(5-7)+.....+(2001-2003)]+2005
A=[(-2)+(-2)+....+(-2)]+2005
Vì từ 1 đến 2003 có: 1002 số hạng => có 501 cặp => có 501 số -2
A=(-2) x 501 +2005
A=-1002+2005
A=1003
A=1-3+5-7+...+2001-2003+2005
A=(1-3)+(5-7)+....+(2001-2003)+2005
A=(-2)+(-2)+...+(-2)+2005
A=(-2).501+2005
A=(-1002)+2005
A=1003
B=1-2-3+4+5-6-7+8+...+1993-1994
B=(1-2-3+4)+(5-6-7+8)+....+(1989-1990-1991+1992)+(1993-1994)
B=0+0+...+0+(-1)
B=(-1)
C=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006
C=(1+2-3-4)+(5+6-7-8)+....+(2001+2002-2003-2004)+(2005+2006)
C=(-4)+(-4)+....+(-4)+4011
C=(-4).501+4011
C=(-2004)+4011
C=2007
A=1-3+5-7+...+2001-2003+2005
A= (-2) + (-2) +....+(-2) +2005
A= -2. 501 +2005
A= -1002 +2005
A= 1003
B=1-2-3+4+5-6-7+8+...+1993-1994
B= (1-2-3+4) + (5-6-7 +8) +.......+ (1989 - 1990 -1991 +1992)+1993-1994
B= 0 + 0+....+0+ 1993-1994
B= -1
C=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006
C= (1+2-3-4) + (5+6-7-8) +.....+(2001+2002 -2003 -2004) +2005+2006
C= -4. 501 + 2005 +2006
C= -2004+2005+2006
C= 2007
0-1+2-3+4-5...+2004-2005=?
1-3+5-7+9-11...+2005-2007=?
Tính: a, \(\sqrt{2006+2\sqrt{2005}}-\sqrt{2006-2\sqrt{2005}}\)
b, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(\sqrt{2006+2\sqrt{2005}}-\sqrt{2006-2\sqrt{2005}}\)
\(=\sqrt{\left(\sqrt{2005}+1\right)^2}-\sqrt{\left(\sqrt{2005}-1\right)^2}\)
\(=\left(\sqrt{2005}+1\right)-\left(\sqrt{2005}-1\right)\)
= 2
M = \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(\Rightarrow\sqrt{2}M\)\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)
= - 2
\(\Rightarrow M=-\sqrt{2}\)
Tính giá trị của biểu thức:
a, 15/34 +7/21+19/34-20/15+3/7
b, 12-8×(3/2)^3
c,(1/9)^2005×9^2005-96^2÷24^2
\(a,\frac{15}{34}+\frac{7}{21}+\frac{19}{34}-\frac{20}{15}+\frac{3}{7}\)
\(=>\left(\frac{15}{34}+\frac{19}{34}\right)+\left(\frac{7}{21}+\frac{3}{7}\right)-\frac{20}{15}\)
\(=>1+\frac{16}{21}-\frac{20}{15}\)
\(=>\frac{37}{21}-\frac{20}{15}\)
\(=>\frac{3}{7}\)
\(b,12-8\cdot\left(\frac{3}{2}\right)^3\)
\(=>12-8\cdot\frac{27}{8}\)
\(=>12-27\)
\(=>-15\)
\(c,\left(\frac{1}{9}\right)^{2005}\cdot9^{2005}-96^2:24^2\)
\(=>\left(\frac{1^{2005}^{ }}{9^{2005}}\cdot9^{2005}\right)-\left(96^2:24^2\right)\)
\(=>\left(1^{2005}\right)-16\)
\(=>1-16\)
\(=>-15\)
\(^{B=7-7^2+7^3....+7^{2005}}\)
So sánh;
N=-7/10^2005 + -15/10^2006
M=-15/10^2005 + -7/10^2005
Tính
S = 0-1=2-3+4-5+6-7+...+2004-2005
S = 1-3+5-7+9-11+...+2005-2007
S = 1-2+3-4+5-6+.. + 2001 - 2002 + 2003
S = 2194.21952195+2195.21942194
tính nhanh các tổng sau
a. 2005 x 2004 - 1004
2003x 2005+1001
b. (chú ý đây là hỗn số)
12 3/5+ (2 1/2-1 4/7)- (3 3/5- 4 4/7)
xin lỗi các bạn nha, phần a chép sai đề nên bỏ X