tìm các số nguyên dương n sao cho
1.2.3...(n-1) chia hết cho n
Tìm các số nguyên dương n để 1.2.3.....(n-1) chia hết cho n
tìm n nguyên dương sao cho s(n)=1.2.3.....7 +n(n+1)(n+2).....(n+7) có thể viết dưới dạng tổng các bình phương 2 số nguyên dương
tìm tất cả các số nguyên dương lẻ n sao cho +1 chia hết cho n
Tìm các số nguyên dương n lẻ sao cho n-1 là số nguyên dương nhỏ nhất trong các số nguyên dương k thỏa mãn \(\frac{k\left(k+1\right)}{2}\)chia hết cho n
Tìm tất cả các số nguyên dương n sao cho 2^n -1 chia hết cho 7
ta có: xy+3y-y=6
=> xy+2y=6
=> y(x+2)=6
vì x,y nguyên nên y,(x+2) là các ước của 6
ta có bảng sau
x+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -8 |
xy+3y-y=6
xy+y(3-1)=6
xy+y2=6
y(x+2)=6
lập bảng
x+2 | 2 | 3 | -2 | -3 |
y | 3 | 2 | -3 | -2 |
x | 0 | 1 | -4 | -5 |
vậy với các cặp x,y thỏa mãn là:
nếu y=3 thì x=0;nếu y=2 thì x=1;nếu y=-2 thì x=-4;nếu y=-3 thì x=-5
Gọi S(n) là tổng của các chữ số của số nguyên dương n. Hãy tìm số nguyên dương n nhỏ nhất sao cho: S(n) và S(n+1) đều chia hết cho 7
dễ thấy để S(n) và S(n+1) đều chia hết cho 1 số thì đuôi của n kết thúc bằng các số 9.
giả sử n có x số 9 cuối(ta tìm x nhỏ nhất)
khi đó n có dạng a 99...9 (x số 9)
=> n+1=b00...0 ( x+1 số 0) với b=a+1
do S(n) ≡ S(n+1) (mod 7) => a+9x ≡ b (mod 7) => 9x ≡ 1 (mod 7)
=> x=4
=> n=a9999
mà S(n) chia hết cho 7 => a=6 => n=69999 là nhỏ nhất thỏa mãn :D
Tìm tất cả các số nguyên dương a sao cho tồn tại số nguyên dương n thỏa mãn a chia hết cho cả hai số n2 + 1 và (n + 1)2 + 1
Tìm tất cả các số nguyên dương n sao cho: 2n -1 chia hết cho 7
Lời giải:
Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm)
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm)
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)
Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.
Lời giải:
Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm)
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm)
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)
Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.
Tìm tất cả các số nguyên dương k sao cho tồn tại số nguyên dương n thỏa mãn 2n+11 chia hết cho 2k-1.
Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.
2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m
Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11
Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.
Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.
Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …
Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.