Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 3 2018 lúc 13:16

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình thang cân ABCD có AB // CD

Gọi O là giao điểm của hai đường chéo AC và BD.

Xét ∆ ADC và  ∆ BCD:

AD = BC (tính chất hình thang cân)

AC = BD (tính chất hình thang cân)

CD chung

Do đó  ∆ ADC=  ∆ BCD (c.c.c)

⇒  ∠ D 1 = ∠ C 1

⇒ ∆ OCD cân tại O

⇒ OC = OD nên O nằm trên đường trung trực của CD.

Trục đối xứng hình thang cân là đường thẳng trung trực của hai đáy.

Vậy O thuộc trục đối xứng của hình thang cân.

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
29 tháng 6 2017 lúc 16:19

Đối xứng trục

Nguyễn Thị Kim Anh
Xem chi tiết
Ichigo Sứ giả thần chết
31 tháng 8 2017 lúc 21:01

Gọi O là giao điểm hai đường chéo AC,BD của hình thang cân

Xét tam giác ADC và tam giác BCD ta có:

AD=BC

góc ADC=góc BCD

DC chung

=> tam giác ADC=tam giác BCD (c-g-c)

=> góc ACD=góc BDC

=> tam giác COD cân tại O => OD=OC

=> O thuộc đường trung trực của CD

=> O thuộc trục đối xúng của hình thang cân

Phương
Xem chi tiết
qwerty
9 tháng 10 2016 lúc 16:58

Nguyễn Thị Vân Anh
Xem chi tiết
Tuấn
10 tháng 11 2015 lúc 23:20

gia điểm 2 đường chéo luôn thuộc trục đối xúng của hình thang cân ạ.
Bạn hạ vuông góc xuống 2 đáy là đc 

Nguyễn Thị Vân Anh
10 tháng 11 2015 lúc 23:39

Nothing~

Ngủ hoy, chả ai giải :V

marie
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2018 lúc 6:27

Để học tốt Toán 8 | Giải toán lớp 8

a) ABCD là hình thoi

⇒ ABCD là hình bình hành

⇒ giao điểm O của AC và BD là tâm đối xứng của ABCD.

b)

Để học tốt Toán 8 | Giải toán lớp 8

ét hình thoi ABCD, gọi O là giao điểm của 2 đường chéo.

* Ta chứng minh: đường chéo BD là trục đối xứng của hình

Lấy điểm M bất kì thuộc hình thoi. Không mất tổng quát, M nằm trên CD.

Gọi M’ đối xứng với M qua đường thẳng BD. Ta chứng minh điểm M’ cũng thuộc hình thoi

+ Gọi I là giao điểm của MM’ và BD.

Xét tam giác DIM và DIM’ có:

Để học tốt Toán 8 | Giải toán lớp 8

DI chung

IM= IM’ ( do M và M’ đối xứng với nhau qua BD)

=> ∆ DIM = ∆ DIM’ ( c.g.c)

=> DM = DM’ và Để học tốt Toán 8 | Giải toán lớp 8

Lại có: ABCD là hình thoi nên

Để học tốt Toán 8 | Giải toán lớp 8

Từ (1) và (2) suy ra, điểm M’ nằm trên cạnh AD hay điểm M’ thuộc hình thoi

=> BD là trục đối xứng của hình thoi.

*Chứng minh tương tự, ta có: AC là trục đối xứng của hình thoi.

Khải Nhi
Xem chi tiết
o0o I am a studious pers...
20 tháng 6 2016 lúc 20:18

a) Ta có hình thoi đồng thời là HBH

=> 2  đường chéo căt nhau tại trung điểm mỗi đường 

=> 2 đường chéo của hình thoi đối xứng vs nhau

b) Từ câu a 

=> 2 đường chéo đó cũng là trục đối xứng

Trần Cao Anh Triết
20 tháng 6 2016 lúc 20:23

a) Ta có hình thoi đồng thời là HBH

=> 2 đường chéo căt nhau tại trung điểm mỗi đường

=> 2 đường chéo của hình thoi đối xứng vs nhau

b) Từ câu a => 2 đường chéo đó cũng là trục đối xứng

Kaito
20 tháng 6 2016 lúc 20:35

A B C D O

- Hình bình hành nhận giao điểm hai đường chéo là tâm đối xứng. Hình thoi cũng là một hình bình hành nên giao điểm hai đường chéo hình thoi là tâm đối xứng của hình.

- BD là đường trung trực của AC (do BA = BC, DA = DC) nên A đối xứng với C qua BD.

B và D cũng đối xứng với chính nó qua BD.

Do đó BD là trục đối xứng với chính nó qua BD.

Do đó BD là trục đối xứng của hình thoi.

Tương tự AC cũng là trục đối xứng của hình thoi.

Linh Dao
Xem chi tiết