Cho tam giác ABC có trung tuyến BD =6 , CE = 4.5 . Tính BC
Cho tam giác ABC có BC=5. Trung tuyến BD=4,5; CE=6. Tính diện tích tam giác ABC.
Cho tam giác ABC có trung tuyến BD, CE vuông góc tại G, biết BD=9cm, CE=12cm. Tính BC?
hình như thiếu đề bạn à , G ở đâu , bạn ghi lại đề đi , rồi gửi link qua cho mk
Cho tam giác ABC có các đường trung tuyến BD và CE vuông góc với nhau. Tính BC biết BD=9cm, CE=12cm
Cho tam giác ABC có trung tuyến BD và CE vuông góc với nhau tại G biết AB=6,AC=8.Tính BC?
goi G là gjao điểm của 2 trung tuyến BD ,CE.=>GB _|_ GC.khj đó điều pn cần làm là tính đk GB,GC==> phải tính đk BD,CE.
Kẻ đg cao BN ,CM của T.g ABC
Gọi V là gjao BN và CE
Gọi R là gjao CM và BD
khj đó,pn dễ dàng thấy B,M,G,N,C cùng nằm trên đg tròn đg kính BC.==>Góc GBV= GÓC GCD(1)
GÓC EBG= GÓC RCG (2) (Cák góc cùng chắn 1 dây cung)
==>tam gják BGV ~t.g CGD(g.g.g)
( góc BGV = góc CGD=90,và (1))
==>BV/CD=GV/GD=BG/CG=BD/CE
==>BV=CD.BD/CE (CD=AC/2=4 cm)
GV=GD.BD/CE =(BD/3).(BD/CE )
xét t.g vuông BGV( do G thuộk đg tròn đ.k BC) Ta có
BG^2+GV^2=BV^2
<==>BG ^2=BV^2-GV^2
Thay gjá trị ở trên có k.q
BG=[BD.Căn (16.9-BD^2)]/3CE
mà BG=2BD/3
==>BD^2+4CE ^2=16.9[3]
CMtương tự
xét 2 tam gják BGE ~ T.g CGR
==>4BD^2 + CE^2=81[4]
Giải hpt [3,4] pn tính đk
BD^2=12 , CE ^2=33
==>[BD^2+ CE ^2].[2/3]^2 = GB^2+GC^2 = BC^2 = 20 cm(do G là trọng tâm)
==> BC=2 Căn 5
Nguồn: cho tam giac abc co ab=6 ac=8, cac duong trung tuyen bd va ce vuong goc voi nhau. tinh bc??????? | Yahoo Hỏi & Đáp
BẠn nhầm đề bài rồi nha AB = 6 , AC = 8
goi G là gjao điểm của 2 trung tuyến BD ,CE.=>GB _|_ GC.khj đó điều pn cần làm là tính đk GB,GC==> phải tính đk BD,CE.
Kẻ đg cao BN ,CM của T.g ABC
Gọi V là gjao BN và CE
Gọi R là gjao CM và BD
khj đó,pn dễ dàng thấy B,M,G,N,C cùng nằm trên đg tròn đg kính BC.==>Góc GBV= GÓC GCD(1)
GÓC EBG= GÓC RCG (2) (Cák góc cùng chắn 1 dây cung)
==>tam gják BGV ~t.g CGD(g.g.g)
( góc BGV = góc CGD=90,và (1))
==>BV/CD=GV/GD=BG/CG=BD/CE
==>BV=CD.BD/CE (CD=AC/2=4 cm)
GV=GD.BD/CE =(BD/3).(BD/CE )
xét t.g vuông BGV( do G thuộk đg tròn đ.k BC) Ta có
BG^2+GV^2=BV^2
<==>BG ^2=BV^2-GV^2
Thay gjá trị ở trên có k.q
BG=[BD.Căn (16.9-BD^2)]/3CE
mà BG=2BD/3
==>BD^2+4CE ^2=16.9[3]
CMtương tự
xét 2 tam gják BGE ~ T.g CGR
==>4BD^2 + CE^2=81[4]
Giải hpt [3,4] pn tính đk
BD^2=12 , CE ^2=33
==>[BD^2+ CE ^2].[2/3]^2 = GB^2+GC^2 = BC^2 = 20 cm(do G là trọng tâm)
==> BC=2 Căn 5
Cho tam giác ABC có trung tuyến BD, CE vuông góc tại G , biết BD= 9 ( cm ), CE= 12(cm). Tính BC
gọi G là giao điểm của BD và CE
ta có
BG=2/3 BD suy ra BG=2/3 . 9= 6 cm
CG=2/3 CE suy ra CG=2/3 . 12= 8 cm
xét tam giác CGB vuông tại G ta có
CB^2= CG^2 + BG^2 =8^2 + 6^2 =64 + 36
CB^2=100 suy ra CB =10 cm
Cho tam giác ABC có AB = 6 cm AC = 8 cm hai đường trung tuyến BD và CE vuông góc với nhau tính BC
Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.]
Áp dụng định lý pythagore vào tam giác vuông BGE ta có:
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1)
Áp dụng định lý pythagore vào tam giác vuông CGD ta có:
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2)
mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có:
BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=>
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=>
BC = 2.(căn 5) cm
Cho tam giác ABC có BC = 34 cm, đường trung tuyến BD = 24 cm, đường trung tuyến CE = 45 cm. Gọi G là giao điểm của BD và CE. Tính độ dài các cạnh của tam giác GDE
G là giao điểm của 2 đường trung tuyến BD và CE
Suy ra : G là trọng tâm tam giác ABC
Suy ra :
GD = 1/3 BD = 1/3 x 24 = 8 ( cm )
GE = 1/3 CE = 1/3 x 45 = 15 ( cm )
Xét tam giác ABC có :
E là trung điểm AB ( trung tuyến CE )
D là trung điểm AC ( trung tuyến BD )
Suy ra : ED là đường trung bình của tam giác ABC
Suy ra ED : = 1/2 x BC = 1/2 x 34 = 17 ( cm )
Vậy GD = 8 cm
GE = 15 cm
ED = 17 cm
B1.Cho tam giác ABC có BC=10cm .Các đường trung tuyến BD=9cm và CE=12cm.
CM \(BD\perp CE\)
B2. Cho tam giác ABC có độ dài các đường trung tuyến AM=15cm; BD=9cm;CE=12cm.
Tính độ dài các cạnh của tam giác ABC
mọi người ai giúp mình vs giải chi tiết nha
Bài 3. Cho tam giác ABC có các đường trung tuyến BD và CE vuông góc với nhau. Tính độ dài BC biết BD = 9cm, CE = 12cm.
Tham khảo:
Gọi I là giao điểm của CE và BD.
Theo t/c của đường trung tuyến, ta có:
CI/CE = 2/3
hay CI/12 = 2/3
<=> CI = 2/3.12
<=> CI = 8 cm
Tương tự, ta có:
BI/BD = 2/3
hay BI/9 = 2/3
<=> BI = 2/3.9
<=> BI = 6 cm
t.g BIC vuông tại I nên:
BC^2 = IC^2 + BI^2
<=> BC^2 = 8^2 + 6^2
<=> BC^2 = 100
<=> BC = 10 cm
Gọi giao điểm của hai đường trung tuyến BD và CE là G thì G là trọng tâm tam giác ABC.
Theo tính chất đường trung tuyến của tam giác ta có BG = \(\dfrac{2}{3}\) BD; CG = \(\dfrac{2}{3}\) CE
Mà BD = 9 cm; CE = 12 cm nên BG = \(\dfrac{2}{3}\) . 9 = 6 cm; CG = \(\dfrac{2}{3}\) . 12 cm = 8 cm.
Xét tam giác BGC vuông tại G.
Ta có: BC2 = BG2 + CG2 (định lý Pytago)
=> BC2 = 62 + 82
=> BC2 = 100
=> BC = \(\sqrt{100}\) = 10 cm
Vậy BC = 10 cm.