Tính A biết A = \(\frac{9}{4\cdot5}+\frac{9}{5\cdot6}+...+\frac{9}{34\cdot35}+\frac{9}{35\cdot36}\)
Rút gọn:
a/ \(\frac{4\cdot7}{9\cdot32}\)
b/ \(\frac{3\cdot21}{14\cdot15}\)
c/ \(\frac{2\cdot5\cdot13}{26\cdot35}\)
d/ \(\frac{9\cdot6-9\cdot3}{18}\)
e/ \(\frac{17\cdot5-17}{3-20}\)
f/ \(\frac{49+7\cdot49}{49}\)
a,\(\frac{4.7}{9.32}=\frac{7}{9.8}=\frac{7}{72}\)
a) \(\frac{4.7}{9.32}\)=\(\frac{28}{288}\)=\(\frac{7}{72}\)
b)\(\frac{3.21}{14.15}\)=\(\frac{63}{210}\)=\(\frac{3}{10}\)
c)\(\frac{2.5.13}{26.35}\)=\(\frac{130}{910}\)=\(\frac{1}{7}\)
d)\(\frac{9.6-9.3}{18}\)=\(\frac{27}{18}\)=\(\frac{3}{2}\)
e)\(\frac{17.5-17}{3-20}\)=\(\frac{68}{-17}\)=\(-4\)
f)\(\frac{49+7.49}{49}\)=\(\frac{392}{49}\)=\(8\)
\(a,\frac{4.7}{9.32}=\frac{4.7}{9.4.8}=\frac{7}{9.8}=\frac{7}{72}\)
\(b,\frac{3.21}{14.15}=\frac{3.3.7}{2.7.3.5}=\frac{3}{2.5}=\frac{3}{10}\)
\(c,\frac{2.5.13}{26.35}=\frac{2.5.13}{13.2.5.7}=\frac{1}{7}\)
\(d,\frac{9.6-9.3}{18}=\frac{9.\left(6-3\right)}{18}=\frac{9.3}{18}=\frac{9.3}{2.9}=\frac{3}{2}\)
\(e,\)\(\frac{17.5-17}{3-20}=\frac{17.\left(5-1\right)}{-17}=\frac{17.4}{-17}=\frac{-17.\left(-4\right)}{-17}=-4\)
\(f,\frac{49+7.49}{49}=\frac{49.\left(1+7\right)}{49}=\frac{49.8}{49}=8\)
Rút gọn biểu thức sau: \(\frac{1\cdot3\cdot5+2\cdot6\cdot10+3\cdot9\cdot15}{3\cdot5\cdot12+6\cdot10\cdot24+9\cdot15\cdot36}\)
\(\frac{1\cdot3\cdot5+2\cdot6\cdot10+3\cdot9\cdot15}{3\cdot5\cdot12+6\cdot10\cdot24+9\cdot15\cdot36}=\frac{1+1+1}{12+12+12}=\frac{3\cdot1}{3\cdot12}=\frac{1}{12}\)
\(\frac{7}{3\cdot4}-\frac{9}{4\cdot5}+\frac{11}{5\cdot6}-\frac{13}{6\cdot7}+\frac{15}{7\cdot8}-\frac{17}{8\cdot9}+\frac{19}{9\cdot10}\)
ta có:(3+4)/4=3/(3*4)+4/(3*4) =1/4+1/3 chứng minh tương tự,cộng vế với vế, ta được kết quả là 13/30
sắp xếp lại các phân số sau theo thứ tự lớn dần từ tái sang phải :2/5,1/-4,4/9,-3/4
rút gọn \(\frac{2\cdot5\cdot13}{26\cdot35}\)\(\frac{24\cdot5-24}{4-28}\)\(\frac{123\cdot6+123\cdot4}{3-126}\)
ai làm đúng mình sẽ tick
1). Sx:-3/4 ; 1/-4 ; 2/5 ; 4/9
2). \(\frac{2.5.13}{26.35}+\frac{24.5-24}{4-28}+\frac{123.6+123.4}{3-126}=\frac{2.5.13}{2.13.5.7}+\frac{24.\left(5-1\right)}{4.\left(1-7\right)}+\frac{123.\left(6+4\right)}{-123}=\frac{1}{7}+4-10=\frac{1}{7}+\frac{42}{7}=\frac{43}{7}\)
\(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+\frac{1}{5\cdot5}+\frac{1}{6\cdot6}+\frac{1}{7\cdot7}+\frac{1}{8\cdot8}+\frac{1}{9\cdot9}\)
HÃY CHỨNG MINH :
\(\frac{2}{5}< A< \frac{8}{9}\)
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)
Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)
Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)
Bài làm :
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A>\frac{1}{2}-\frac{1}{10}\)
\(A>\frac{2}{5}\left(1\right)\)
Ta cũng có :
\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)
\(A< 1-\frac{1}{9}\)
\(A< \frac{8}{9}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)
=> Điều phải chứng minh
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Tính:
a)\(\frac{5\cdot18-10\cdot27+15\cdot36}{10\cdot36-20\cdot54+30\cdot27}\)
b)\(\frac{\frac{-6}{7}+\frac{6}{19}-\frac{6}{31}}{\frac{9}{7}-\frac{9}{19}+\frac{9}{31}}\)
\(\frac{5.18-10.27+15.36}{10.36-20.54+30.72\left(not27\right)}=\frac{5.18-10.27+15.36}{4\left(5.18-10.27+15.36\right)}=\frac{1}{4}\)
\(\frac{\frac{-6}{7}+\frac{6}{19}-\frac{6}{31}}{\frac{9}{7}-\frac{9}{19}+\frac{9}{31}}=\frac{-6\left(\frac{1}{7}-\frac{1}{19}+\frac{1}{31}\right)}{9\left(\frac{1}{7}-\frac{1}{19}+\frac{1}{31}\right)}=\frac{-6}{9}=\frac{-2}{3}\)
\(41\sqrt[9^1]{8\sqrt[2]{\frac{12}{2.85\frac{1\cdot2+3\cdot4+5\cdot6+7\cdot8+9\sqrt[4]{16}}{2\cdot\frac{12}{2}\sqrt{4^2}-7^2}}}4\cdot5\cdot6\cdot7\cdot8\cdot9}\)
Ô phép tính khủng. Cái này do bạn chế ra à !
bài 1 tính nhanh
a) A=\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
b) B=\(\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{57}+...+\frac{3}{49\cdot51}\)
c) C=\(\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}+\frac{5^2}{26\cdot31}\)
d) D=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
e) E=\(\frac{3}{5\cdot11}+\frac{5}{11\cdot21}+\frac{7}{21\cdot35}+\frac{9}{35\cdot53}\)
f) F=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{99}+\frac{4}{77}\)
giải chi tiết giúp mình nhé thank you very much
A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101
A = 2 - 2/101 = 200/101
B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51
B = 3-3/51(tự tính nhé)
C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31
C = 5(5-1/31)(tự tính)
D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)
2E nhân lên rồi giải giống trên
3F Rồi nhân 4/77 và rút gọn thì tính được
a, A= \(\frac{1}{1}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0
A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)
a) A= \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}=\frac{99}{100}\)
b) \(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{49.51}\)
=\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right).\frac{3}{2}\)
=\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right).\frac{3}{2}\)
= \(\left(1-\frac{1}{50}\right).\frac{3}{2}=\frac{49}{50}.\frac{3}{2}=\frac{147}{100}\)
c) \(C=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
= \(\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right).5\)
= \(\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right).5\)
= \(\left(1-\frac{1}{31}\right).5=\frac{30}{31}.5=\frac{150}{31}\)
Mấy bài còn lại mik đang phải nháp đã. Bạn thông cảm cho mik
Rút gọn:
a,\(A=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\)
b,\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2014\cdot2016}\right)\)