so sánh S=1+2+2^2+2^3+...+2^50 và 2^51
So sánh
a) 2^700 va 5^300
b) so sánh S =1 +2+2^2+2^3+....+2^50 với 2^51
\(a,2^{700}=\left(2^7\right)^{100}=128^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Có \(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)
\(b,S=1+2+2^2+...+2^{50}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2S-S=S=2^{51}-1< 2^{51}\)
a) Ta có :
\(2^{700}=\left(2^7\right)^{100}=128^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Vì \(128^{100}>125^{100}\)\(\Rightarrow\)\(2^{700}>5^{300}\)
Vậy \(2^{700}>5^{300}\)
b) \(S=1+2+2^2+...+2^{50}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)
\(\Rightarrow S=2^{51}-1< 2^{51}\)
Vậy S < 251
_Chúc bạn học tốt_
a , so sánh lũy thừa 2^50 và 3^40 , 2^30 và 3^40 , 4^30 và 5^ 20 , 4^5 và 8^3
b tính tổng s = 1+3+5+...+51
s=2+4+6+..+50
So sánh:
a) 5^300 và 3^500
b) (-16)^11 và (-32)^9
c) (2^2)^3 và 2^2^3
d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20
e) 4^30 và 3×24^10
g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51
So sánh
a) 231 và 321
b) S= 1+2+...+250 và 251
a) có 231=2.230=2.810
321=3.320=3.910
vì 2.810 < 3.910 nên 231 < 321
b)
có S = 1 + 2 + ... + 250
<=> S = 20 + 21 + 22 + 23 + ... + 250
=> 2S = 2(20 + 21 + 22 + 23 + ... + 250) = 21 + 22 + 23 + ... + 251
=> 2S - S = 21 + 22 + 23 + ... + 251 - ( 20 + 21 + 22 + 23 + ... + 250)
=> S = 21 + 22 + 23 + ... + 251 - 20 - 21 - 22 - 23 - ... - 250
=> S = 251 - 20
=> S = 251 -1 < 251
=> S < 251
\(2^{31}=2^{30}.2=\left(2^3\right)^{10}=8^{10}\)
So sánh tổng \(S=1+2+2^2+2^3+....+2^{50}\)với\(2^{51}\)
2S=2(1+2+22+...+250)
2S=2+22+...+251
2S-S=(2+22+...+251)-(1+2+22+...+250)
S=251-1<251
=>S<251
Theo bài ra , ta có :
2S=2(1+2+22+...+250)
2S=2+22+...+251
2S-S=(2+22+...+251)-(1+2+22+...+250)
S=251-1<251
=>S<251
Đáp số : S<251
so sánh 1+2+2^2+2^3+........+2^50 với 2^51
\(A=1+2+2^2+2^3+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+...+2^{51}\)
\(A=2A-A=2^{51}-1<2^{51}\)
Bài này có bạn nào giải dc ko??? Giup tớ với
So sánh tổng: S=1+2+2^2+...+2^50 với 2^51
\(S=1+2+2^2+....+2^{50}\)
\(2S=2+2^2+2^3+....+2^{51}\)
\(2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)
\(S=2^{51}-1\)
Vì \(2^{51}-1< 2^{51}\)
\(\Rightarrow S< 2^{51}\)
\(2S=2+2^2+.........+2^{51}\)
\(2S-S=\left(2+2^2+.......+2^{51}\right)-\left(1+2+.......+2^{50}\right)\)
\(\Rightarrow S=2^{51}-1< 2^{51}\)
Vậy S<251
B=2^51 so sánh A và B
\(A=1+2+2^2+2^3+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+....+2^{51}\)
\(=>2A-A=\left(2+2^2+2^3+2^4+...+2^{51}\right)-\left(1+2+2^2+2^3+....+2^{50}\right)\)
\(=>A=2^{51}-1< 2^{51}=B=>A< B\)
So sánh: A =12+32+........+512 và B=22+42+.....+502
So sánh số A,B số nào lớn hơn ? A =2^0+2^1+2^2+2^3+...+2^50 và B=2^51