Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thục Anh Ngô
Xem chi tiết
Chauu Arii
Xem chi tiết
Hollow Ichigo 3
Xem chi tiết
Hoàng Thảo Hiên
Xem chi tiết
Nguyễn Thế Hiển
5 tháng 1 2017 lúc 21:29

2x(8x-1)2(4x-1)= 9

<=> 2x(64x2-16x+1)(4x-1)=9

<=>(128x - 32x+ 2x)(4x-1)=9

<=>512x4 - 256x3 + 40x2  - 2x=9

<=>64x- 32x3 + 5x- 0,25x - 1,125=0

<=>64x3(x-0,5) + 5x(x-0,5) + 2,5x  -0,25x - 1,125 = 0

<=> (x-0,5)(64x3 + 5x - 2,25) = 0

<=> (x-0,5)(64x3  + 16x- 16x- 4x + 9x - 2,25)=0

<=>(x-0,5)[64x2 (x + 0,25 ) -16x(x + 0,25) + 9(x + 0,25) = 0

<=> (x-0,5)(x+0,25)(64x-16x +9) = 0  (vì 64x-16x +9 > 0)

<=>\(\orbr{\begin{cases}x-0,5=0\\x+0,25=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0,5\\x=-0,25\end{cases}}\)

Vậy phương trình có hai nghiệm là S={\(\frac{1}{2}\) ; \(\frac{-1}{4}\)}

An Nguyễn Văn
Xem chi tiết
Chu Văn Long
5 tháng 10 2016 lúc 11:05

Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1

Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)

<=>  \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

<=>    \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

<=>  \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)

<=>  \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)

Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm

Cô Hoàng Huyền
5 tháng 10 2016 lúc 11:05

Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)

Vậy pt có 1 nghiệm x= 1.

Ta giải pt bậc ba theo công thức Cardano:

\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)

Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)

\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)

Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)

Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)

Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.

Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.

\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)

Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.

Thiên An
5 tháng 10 2016 lúc 11:14

\(2x^4+4x^3-7x^2-5x+6=0\)

\(\Leftrightarrow\)\(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)

\(\Leftrightarrow\)\(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)

Vậy \(x=1\) hoặc \(2x^3+6x^2-x-6=0\)

Dùng MTBT giải phương trình trên ta nhận thêm được 3 nghiệm: x1 = 0,94; x2 = -1,14; x3 = -2,79.

Phan Nghĩa
Xem chi tiết
Nguyễn Đức Trung
Xem chi tiết
Nguyễn Gia Bảo
Xem chi tiết
Nguyễn Gia Bảo
1 tháng 8 2018 lúc 13:02

Mình sẽ k cho bạn nào nhanh nhất nhé <3

Bui Huyen
23 tháng 8 2019 lúc 20:26

\(\frac{1}{x-3}=a,\frac{1}{y-4}=b\)

\(hpt\Leftrightarrow\hept{\begin{cases}a+b=\frac{5}{3}\\4a-3b=\frac{3}{2}\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{13}{14}\\b=\frac{31}{42}\end{cases}\Rightarrow}}\hept{\begin{cases}x=\frac{53}{13}\\y=\frac{166}{31}\end{cases}}\)

Minh An
Xem chi tiết