Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Đức Hoan
Xem chi tiết
Yen Nhi
4 tháng 11 2021 lúc 22:28

\(M-\frac{2020}{2011}=\frac{a^2-2a+2011}{a^2}-\frac{2010}{2011}\)

\(=\frac{2011a^2-2.2011a+2011^2-2010a^2}{2011a^2}\)

\(=\frac{a^2-2.2011a+2011^2}{2011a^2}=\frac{\left(a-2011\right)^2}{2011a^2}\ge0\)

\(\Rightarrow M\ge\frac{2010}{2011}\)

Vậy giá trị nhỏ nhất của \(M=\frac{2010}{2011}\) khi \(a-2011=0\Rightarrow a=2011\)

Khách vãng lai đã xóa
Anh Lê
Xem chi tiết
Ái Kiều
Xem chi tiết
nguyễn đình thành
Xem chi tiết
Trần Công Nhất
Xem chi tiết
Đào Phúc Thịnh
29 tháng 8 2021 lúc 19:31

mình nhầm rút gọn M ra 4a-9/a-6

nên muốn M số nguyên thì a phải là ước của 9

nên a\(\in\)(1;-1;3;-3;9;-9)

Khách vãng lai đã xóa
Trần Công Nhất
29 tháng 8 2021 lúc 19:19

mọi người giải gấp cho mik vói ạ

Khách vãng lai đã xóa

a = 3

okkkkk

Khách vãng lai đã xóa
Đoàn Thanh Bảo An
Xem chi tiết
Funny Suuu
Xem chi tiết
Minh Nguyen
22 tháng 3 2020 lúc 16:02

a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)

\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)

\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)

\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)

\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)

b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)

\(=4-\frac{16}{a^2+4}\)

Để M đạt giá trị lớn nhất 

\(\Leftrightarrow\frac{16}{a^2+4}\)min

\(\Leftrightarrow a^2+4\)max

\(\Leftrightarrow a\)max

Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.

Khách vãng lai đã xóa
Linh Linh
Xem chi tiết
Nguyễn Thị Xuân Hạnh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2022 lúc 18:29

a. Phương trình có nghiệm \(x=-1\) nên:

\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)

\(\Leftrightarrow1+2m-2+m-5=0\)

\(\Leftrightarrow m=2\)

Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)

b.

\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=4\left(m-1\right)^2-2\left(m-5\right)\)

\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)