Cho M=(a^2-2a+2011)/a^2.Tìm giá trị của a để M đạt GTNN
Cho biểu thức M=(a^2-2a+2011)/a^2
Hãy tìm giá trị của a để M có giá trị nhỏ nhất
\(M-\frac{2020}{2011}=\frac{a^2-2a+2011}{a^2}-\frac{2010}{2011}\)
\(=\frac{2011a^2-2.2011a+2011^2-2010a^2}{2011a^2}\)
\(=\frac{a^2-2.2011a+2011^2}{2011a^2}=\frac{\left(a-2011\right)^2}{2011a^2}\ge0\)
\(\Rightarrow M\ge\frac{2010}{2011}\)
Vậy giá trị nhỏ nhất của \(M=\frac{2010}{2011}\) khi \(a-2011=0\Rightarrow a=2011\)
Tìm giá trị của m để A=4m2+2m đạt GTNN
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
Cho \(P=\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+\frac{2a-2}{\sqrt{a}-1}\)
a) Tìm điều kiện của a để P có nghĩa, rút gọn P
b) Tìm GTNN của P
c) TÌm các giá trị của a để M=\(\sqrt{a}\cdot\frac{2}{P}\)có giá trị nguyên
Tìm số nguyên a để M đạt giá trị nguyên biết: M= a+9/a-2 - 2a-3/a-2 + 5a+3/a-2
mình nhầm rút gọn M ra 4a-9/a-6
nên muốn M số nguyên thì a phải là ước của 9
nên a\(\in\)(1;-1;3;-3;9;-9)
mọi người giải gấp cho mik vói ạ
a = 3
okkkkk
tìm giá trị của a và b để biểu thức đạt GTNN? và bằng bao nhiêu?
\(P=a^2+2ab+6b^2-2a-32b+2050\)
Cho biểu thức\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
Rút gọn MTìm giá trị của a để M đạt giá trị lớn nhấta) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)
\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)
\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)
\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)
\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)
b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)
\(=4-\frac{16}{a^2+4}\)
Để M đạt giá trị lớn nhất
\(\Leftrightarrow\frac{16}{a^2+4}\)min
\(\Leftrightarrow a^2+4\)max
\(\Leftrightarrow a\)max
Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.
Bài 1: Cho pt x2 -2(m-1)x+m2 +3m+2=0
a) Tìm m để pt luôn có 2 nghiệm phân biệt
b) Tìm giá trị của m thỏa mãn x12 +x22 =12 (x1,x2 là nghiệm của pt)
c) Tìm giá trị của m để tích 2 nghiệm đạt GTNN. Tìm giá trị đó.
Cho pt:x2 -2 (m-1)x +m -5=0
a) Xác định m để pt có 1 nghiệm x= -1 và tìm nghiệm còn lại
b)C/m pt luôn có 2 nghiệm x1,x2 với mọi gia strij của m
c) với giá trị nào của m thì A = x12 +x22 đạt GTNN tìm GTNN đó
Giúp mik vs ạ mik đang cần gấp.Cảm ơn
a. Phương trình có nghiệm \(x=-1\) nên:
\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)
\(\Leftrightarrow1+2m-2+m-5=0\)
\(\Leftrightarrow m=2\)
Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)
b.
\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m
c.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=4\left(m-1\right)^2-2\left(m-5\right)\)
\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)