Chứng minh rằng:
C = 2001n+ 23n . 47n + 252n có chữ số tận cùng là 002
Tìm ba chữ số tận cùng của:
a) 23n.47n (n\(\in\)N*) b) 23n+3.47n+2 (n\(\in\)N)
Chứng tỏ rằng :
\(2001^n+2^{3n}.47^n+25^{2n}\) có 3 chữ số tận cùng là 002
=2001^n+8^n.47^n+625^n
=(...001) + (8.47)^n+(...625)
=(...001)+(...376)+(...625)
=(...002)
\(C=2001^n+2^{3n}.47^n+25^{2n}\)
\(=2001^n+376^n+625^n\)
2001 đồng dư với 001 ( mod100 )
=> 2001n đồng dư với 001 ( mod100 )
376 đồng dư với 076 ( mod100 )
=> 376n đồng dư với 076 ( mod100 )
625 đồng dư với 025 ( mod100 )
=> 625n đồng dư với 025 ( mod100 )
=> 2001n + 376n + 625n đồng dư với 001 + 076 + 025 ( mod200 )
=> ........002 ( mod100 )
=> đpcm
Ta có:
\(2001^n=...001\)
\(2^{3n}.47^n=(2^3)^n.47^n=8.47^n=(8.47)^n=376^n=...376\)
\(25^{2n}=(25^2)^n=625^n=...625\)
\(\Rightarrow2001^n+3^{2n}.47^n+25^{2n}=(...001)+(...376)+(...625)=...002\)
Vậy \(2001^n+2^{3n}.47^n+25^{2n}\)tận cùng bằng 002.
Chứng minh rằng:
a. \(^{5^{4^n}+375}\)chia hết cho 100 ( n thuộc N*)
b. \(2001^n+2^{3n}.47^n+25^{2n}\)có chữ số tận cùng là 002 (n thuộc N*)
Mn giúp iêm vs !!!!
a) Để một số chia hết cho 100 thì số đó phải có 2 chữ số tận cùng là 0
\(5^4=5^2\cdot5^2=25\cdot25\)có tận cùng là 25
Nên \(5^4+375\)có tận cùng là 2 chữ số 0
\(\Rightarrow5^4+375⋮100\)
b) \(2001^n+2^{3n}\cdot47^n+25^{2n}\)
Xét : \(2001^n\)có tận cùng là 1 nên lũy thừa với số mũ bao nhiêu đều có tận cùng là 1
\(2^{3n}\cdot47^n=\left(2^3\right)^n\cdot47^n=8^n\cdot47^n=376^n\)
\(25^{2n}=\left(25^2\right)^n=625^n\)
\(376^n\)và \(625^n\)có chữ số tận cùng là 6 và 5 nên lũy thừa với số mũ bao nhiêu cũng sẽ có tận cùng là 6 hoặc 5
\(\Rightarrow2001^n+376^n+625^n\)có tận cùng là 2
Câu 1 : Chứng minh một số chính phương có tận cùng là 0 thì phải tận cùng bằng chẵn chữ số 0.
Câu 2 : Chứng minh một số chính phương có số ước là một số lẻ và ngược lại .
Câu 3 : Chứng minh rằng một số chính phương có tận cùng là 5 thì chữ số hàng chục là chữ số 2.
Câu 4 : Chứng minh rằng một số chính phương có tận cùng là 6 thì chữ số hàng chục là chữ số lẻ.
Câu 5 : Chứng minh rằng một số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn.
Chứng minh: n có chữ số tận cùng là k thì n^5 cũng có chữ số tận cùng là k
Bài 1:Chứng minh với mọi số tự nhiên n, luôn có
a.12^4n+1+3^4n+1 chia hết cho 5
b.9^2001n+1 chia hết cho 10
c.n^2+n+12 không chia hết cho 5
Bài 2:Tìm chữ số tận cùng
a.2008^29
b.192^26
c.1997^1997
d.1657^735
Giúp mình với :
Cho n \(\in\) N. Chứng minh
a, Nếu n có chữ số tận cùng là chữ số chẵn thì n và 6.n có chữ số tận cung như nhau
b, Nếu n có chữ số tận cùng là chữ số lẻ khác 5 thì n4 có chữ số tận cùng là 1. Nếu n có chữ số tận cùng là chữ số chẵn khác 0 thì n4 có chữ số tận cùng bằng 6
c, n5 có chữ số tận cùng như nhau
chưng minh
b, 2001^n + 2^3n +47^n+25^2n tận cùng là 002
Với x = 1 thì biểu thức tận cùng là 681 mà?
Cho n thuộc N . Chứng minh rằng :
a, Nếu n tậ cùng là số chẵn thì n và 6n có tận cùng như nhau
b, Nếu n tận cùng là chữ số lẻ khác 5 thì n4 tận cùng là 1
c , Số n5 và n có chữ số tận cùng giống nhau