Tìm \(n\in Z\)sao cho:
\(n^7+n^5+1\) là nguyên tố
tìm n thuộc z sao cho n^7+n^5+1 là số nguyên tố
Ta thấy \(n\ge1\)
với \(n=1\Rightarrow n^2+n^5+1=3\)là số nguyên tố
Với n > 1
Ta có \(n^7+n^5+1=\left(n^2+n+1\right)\left(n^5-n^4+n^3-n+1\right)>n^2+n+1>1\)
\(\Rightarrow n^2+n+1\)là ước của\(n^7+n^5+1\)( loại)
\(\Leftrightarrow n=1\)
Dễ thấy :
<br class="Apple-interchange-newline"><div id="inner-editor"></div>n≥1
Với n=1 => n7+n5+1=3 là số nguyên tố
Với n>1
Ta có n7+n5+1=(n2+n+1)(n5-n4+n3-n+1) > n2+n+1 > 1
=> n2+n+1 là ước của n7+n5+1(loại)
Vậy n=1
Bài 1: tìm số tự nhiên n sao cho n-1; n+1;n+5;n+7;n+11;n+13 đồng thời là số nguyên tố
Bài 2: tìm cấc số nguyên tố p sao cho p^3+p^2+11p+2 là số nguyên tố
1) Cho p là số nguyên tố lớn hơn 3. Hỏi p2 là số nguyên tố hay hợp số.
2) Tìm n thuộc Z sao cho: n - 1 là bội của n + 5 và n + 5 là bội của n - 1.
3) Tìm a,b thuộc Z biết a.b = 24 và a + b = -10
4) Tìm n thuộc Z để:
a) n2 - 7 là bội của n + 3
b) n + 3 là bội của n2 - 7
Giúp mình nhé các bạn! Biết làm bài nào thì làm nhé!
tìm n thuộc z sao cho n^7+n^5+1 là số nguyên
Câu 2:
1)Tìm số nguyên tố P sao cho các số P+2 và P+10 là số nguyên tố
2)Tìm giá trị nguyên dương nhỏ hơn 10 của x và y sao cho 3x-4y= -21
3)Cho phân số :A=n-5/n+1 (n thuộc Z;n khác -1)
a)Tìm n để A là số nguyên.
b)Tìm n để A tối giản.
Tìm n \(\in\)Z thỏa n7+n5+1 là số nguyên tố.
Bài mình mới nghĩ đó, ai giỏi giải ik
bài dễ òm nhưng không biết làm :)
Tìm tất cả các số nguyên dương n sao cho: n+1; n+5; n+7; n+13; n+17; n+25; n+37 đều là các số nguyên tố.
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
**** mik nha
n+1;n+5;n+7;n+13;n+17;n+25;n+37.
cách làm:
n+7=n+7.1
n+1=(n+1)+7.0
n+37=(n+2)+7.5
n+17=(n+3)+7.2
n+25=(n+40)+7.3
n+5=(n+5)+7.0
n+13=(n+6)+7.1
các số khi chia cho 7 sẽ có 7 số dư khác nhau
==>trong các số trên có ít nhất 1 số chia hết cho 7
các số ,n+7,n+13,n+17,n+25,n+37 đều lớn hơn 7 néu chúng chia hết cho 7 thì đó là các hợp số ==> loại
==>n+1 hoặc n+5 chia hết cho 7
+trường hợp 1
n+1=7==>n=6,khi đó các số đều là SNT
trường hợp 2
n+5=7==>n=2 khi đó n+7=9 không phải là SNT nên loại vậy n=6
hog phải chép mạng đâu nha tui tự làm mình viết hơi nhiều bạn thông cảm
Cho \(n\in Z^+\)
sao cho 2n-1 là số nguyên tố. Chứng minh n là số nguyên tố.
Tìm tất cả các số nguyên dương n sao cho tất cả các số n+1, n+5, n+7, n+13, n+17, n+25, n+37 đều là các số nguyên tố.
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6