Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hồng Ánh
Xem chi tiết
Phạm Đức Nghĩa( E)
Xem chi tiết
Nguyễn Anh Quân
12 tháng 1 2018 lúc 13:16

Có : góc BAM + góc MAD = 90 độ

Lại có : góc MAD + góc DAQ = 90 độ

=> góc BAM = góc DAQ

=> Tam giác ADQ = tam giác ABM ( cgv - gn )

=> AM=AQ => tam giác AMQ cân tại A

Mà tam giác AMQ vuông tại A => tam giác AMQ vuông cân tại A

Tương tự : cm tam giác PAB = tam giác NAD ( cgv - gn )

=> PA = NA => tam giác ANP cân tại A

Mà tam giác ANP vuông tại A nên tam giác ANP vuông cân tại A

Tk mk nha

Nguyễn Anh Quân
12 tháng 1 2018 lúc 13:20

Xét tam giác CNP vuông tại C có CE là trung tuyến => CE = NP/2

Tương tự : EA = NP/2

=> CE = EA

=> E thuộc trung trực của AC

Tương tự : cm AF = CF = QM/2

=> F thuộc trung trực AC

Mà tứ giác ABCD là hình vuông nên BD chính là trung trực của AC

=> B;D;E;F thẳng hàng

Tk mk nha

Hà Trần
Xem chi tiết
Sắc màu
Xem chi tiết
KAl(SO4)2·12H2O
11 tháng 8 2018 lúc 12:40

a) Vì FE là ĐTB của hình thang => FE//AB//CD

E, F là trung bình của AD và BC nên AK = KC 

=> IC = ID

P/s: ko chắc

Nguyễn Linh Anh
Xem chi tiết
naruto
30 tháng 8 2015 lúc 9:03

mk mới lên lớp 8 nên ko bít làm nhìn mún lòi mắt

Rộp Rộp Rộp
28 tháng 7 2018 lúc 7:56

#naruto Có ai hỏi bạn đâu mà trả lời

☆™๖ۣۜAηɗɾεω༉☆
28 tháng 7 2018 lúc 8:12

Vậy Rộp Rộp Rộp, các bạn khác đang hỏi, bạn không trả lời mà đăng như thế lên làm gì ?

Sắc màu
Xem chi tiết
Thanh Vũ
Xem chi tiết
Nguyễn Thuỳ Linh
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 1 2022 lúc 13:08

Theo cách dựng ta có CE vừa là đường cao, vừa là phân giác trong tam giác CDK

\(\Rightarrow\Delta CDK\) cân tại C

\(\Rightarrow DC=CK\)

Tương tự ta có: \(BM=DB\)

Mặt khác theo định lý phân giác: \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\Rightarrow AB.DC=AC.DB\)

\(\Rightarrow AB.DC-AC.DB=0\)

Dễ dàng chứng minh bài toán quen thuộc: \(AD^2=AB.AC-BD.DC\) 

\(\Rightarrow AD^2=\left(AM-DB\right)\left(AK+DC\right)-DB.DC\)

\(=AM.AK+AM.DC-DB.AK-DB.DC-DB.DC\)

\(=AM.AK+DC\left(AM-DB\right)-DB\left(AK+DC\right)\)

\(=AM.AK+DC.AB-DB.AC\)

\(=AM.AK\)

\(\Rightarrow AK=\dfrac{AD^2}{AM}=4\)

Nguyễn Việt Lâm
18 tháng 1 2022 lúc 13:09

undefined