\(\frac{x1-1}{9}=\frac{x2-2}{8}=......\frac{x9-9}{1}\)biết x1+x2+........+x9= 90
tìm x1 ;x2;x3;x4.............x9
x1 chỉ là tên gọi của x thui nha chứu không phải là x nhân 1 hay x cộng 1 đâu đó
tìm x1,x2,x3,...,x9
\(\frac{x1-1}{9}=\frac{x2-2}{8}=....=\frac{x8-8}{2}=\frac{x9-9}{1}\)
biết x1+x2+...+x9=900
Đặt \(\frac{x_1-1}{9}=\frac{x_2-2}{8}=.....=\frac{x_8-8}{2}=\frac{x_9-9}{1}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{\left(x_1-1\right)+\left(x_2-2\right)+...+\left(x_8-8\right)+\left(x_9-9\right)}{9+8+....+2+1}\)
\(=\frac{\left(x_1+x_2+....+x_9\right)-\left(1+2+....+8+9\right)}{1+2+3+...+8+9}=\frac{900-45}{45}=19\)
\(\Rightarrow\frac{x_1-1}{9}=\frac{x_2-2}{8}=.....=\frac{x_8-8}{2}=\frac{x_9-9}{1}=19\)
\(\Rightarrow x_1=172;x_2=154;x_3=136;x_4=118;x_5=100;x_6=82;x_7=64;x_8=46;x_9=18\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x_1-1}{9}=\frac{x_2-2}{8}=...=\frac{x_9-9}{1}=\frac{x_1-1+x_2-2+...+x_9-9}{9+8+...+1}\)
\(=\frac{\left[x_1+x_2+...+x_9\right]-\left[1+2+3+...+9\right]}{9+8+...+1}=\frac{900-45}{45}=19\)
Ta có : \(\frac{x_1-1}{9}=19\)=> \(x_1-1=171\)=> \(x_1=172\)
Từ đó ta tìm được : x2 = 154 , x3 = 136 , x4 = 118 , x5 = 100 , ...
Đến đây tìm được các x còn lại
Tìm các số x1,x2,x3,...,x8,x9 biết \(\frac{x1+1}{9}=\frac{x2+2}{8}=\frac{x3+3}{7}=...=\frac{x8+8}{2}=\frac{x9+9}{1}\)
tim x1,x2,x3,...,x9 biết
x1-1/9=x2-2/8=x3-3/7=...=x9-9/1 va x1+x2+x3+...+x9=90
Tìm các số x1, x2, x3, x4, x5. x6, x7, x8x, x9 biết x1-1/9=x2-2/8=x3-3/7=...=x9-9/1 và tổng các số đó x1,x2,x3,...,x9 bằng 90
Anh chị giúp em giải bài toán này được không ạ?
Tìm x1,x2,...,x9, biết:
x1+1/9 = x2+2/8 = x3+3/7 = ... =x8+8/2 = x9+9/1 và x1+x2+x3+...+x8+x9=90
Ta có \(x1-\frac{1}{9}=x2-\frac{2}{8}=...=x9-\frac{9}{1}\)
\(=\frac{x1-1}{9}=\frac{x2-2}{8}=\frac{x3-3}{7}=...=\frac{x9-9}{1}\)
= \(\frac{x1-1+x2-2+x3-3+...+x9-9}{9+8+7+...+1}\)
\(=\frac{\left(x1+x2+x3+...+x9\right)-\left(1+2+3+...+9\right)}{9+8+7+....+1}\)
=\(\frac{90-45}{45}=\frac{45}{45}=1\)
=> \(\hept{\begin{cases}\begin{cases}x1=10\\x2=10\end{cases}\\.....\\x9=10\end{cases}}\)
Tìm x1,x2,x3,....,x9 biết rằng;
X1 trừ 1/9 =x2 trừ 2/8 =x3 trừ 3/7 =....=x9 trừ 9/1 và x1 cộng x2 cộng x3 cộng.....cộng x9=90
giải hộ e vs ạk
TÌM các số x1, x2, ..., x9 biết:
x1+x2+...+x9=90
và (x1+170)/9=(x2+14)/8=(x3+11)/7+...+(x9-7)/1
1, các số nguyên x;x1;x2;...;x9 thỏa mãn:(1+x1)(1+x2)...(1+x9)=(1-x1)(1-x2)...(1-x9)=x
chứng minh rằng P=x.x1.x2...x9 =0
1. Cho \(b^2=ac\) ; \(c^2=bd\)
Chứng minh rằng :
\(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
2.Tìm x1; x2 ;x3 ; ... ; x9 biết:
\(\dfrac{x1-1}{9}=\dfrac{x2-2}{8}=\dfrac{x3-3}{7}=...=\dfrac{x9-9}{1}\)
và x1 + x2 + x3 + ... +x9 = 900