p(x) = a.x^2 + bx + c và 5a + b +2c = 0
CMR : p(1) . p(2) < hoặc = 0
Cho đa thức C(x)= a.x^2+b.x+c. Biết 5a+b+2c=0.
Cmr: C(2) nhân C(1) bé hơn hoặc bằng 0
\(C\left(2\right)=4a+2b+c\left(1\right)\)
\(C\left(1\right)=a+b+c\left(2\right)\)
Lấy (1) cộng (2) ta được
\(5a+3b+2c=0\)
\(\Rightarrow C\left(1\right)=-C\left(2\right)\)
\(\Rightarrow C\left(1\right).C\left(2\right)\le0\)
cho p(x) = 2x^2 + bx + c , chứng tỏ nếu 5a - b + 2c =0 thì p(-1) và p(2) < hoặc = 0
cho p(x) = 2x^2 + bx + c , chứng tỏ nếu 5a - b + 2c =0 thì p(-1) . p(2) < hoặc = 0
Bn viết nhầm đề bài rồi.
Ta có : P (x) =ax2 + bx +c
\(\Rightarrow\)P(-1) = a - b + c
\(\Rightarrow\)P(2) = 4a+2b + c
\(\Rightarrow\)P(-1) + P(2) = 5a + b +2c = 0
\(\Rightarrow\)P(-1) = - P(2)
\(\Rightarrow\)P(-1)\(\times\)P(2) \(\le\)0
Cho f(x)=ax^2+bx+c biết 5a+b+2c =0
Cm :f(2)xf(-1) nhỏ hơn hoặc bằng 0
cho đa thức f(x) = ax^2 + bx + c biết 5a + b + 2c = 0
CMR f(-1) . f(2) nhỏ hơn hoặc = 0
Ta có : f(-1) = a. (-1)2 + b(-1) + c = a - b + c
f(2) = a.22 + b.2 +c = 4a + 2b + c
Nên: f(-1) + f(2) = ( a - b + c ) + ( 4a + 2b + c )= 5a + b + 2c = 0
=> f(-1) = -f(2)
Do đó : f(-1) . f(2) =-f(2) . f(2) = -[f(2)]2 \(\le\)0
Vậy....
#)Giải :
Ta có f(2) = 4a + 2b + c
f(-1)= a - b + c
=> f(2) + f(-1) = 4a + 2b + c + a - b + c
= 5a + b + 2c
Mà 5a + b + 2c = 0 => f(2) + f(-1) = 0 => f(2) = f(-1)
=> f(-1).f(2) ≤ 0 ( đpcm )
Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath
cho đa thức f{x}=ax^2+bx+c . C/M nếu 5a-b+2c=0 thì f{2}.f{1} nhỏ hơn hoặc bằng 0
Cho Q(x)=ã^3+bx+c, biết 5a+b+2c=0.Chứng tỏ Q(2).Q(-1) lớn hơn hoặc bằng 0
cho đa thức A(x)= a.(x^2) + bx + c
biết 5a+b+2c=0
chứng torA(2).A(-1) lớn hơn hoặc bằng 0
cho đa thức P(x)=ax^2+bx+c=0. Chứng tỏ rằng nếu 5a-b+2c=0 thì P(-2)*P(1)<hoặc = 0
Ta có:\(P\left(-2\right)=4a-2b+c\)
\(P\left(1\right)=a+b+c\)
Lấy:\(P\left(1\right)+P\left(-2\right)=5a-b+2c=0\)(theo đề bài)
Vì vậy:\(P\left(1\right)=-P\left(-2\right)\)(Hai số đối nhau tổng bằng 0 )
Do đó:\(P\left(-2\right).P\left(1\right)\le0\)( . là dấu nhân nha bn)