CMR : Hai số hiệu bình phương hai số lẻ luôn chia hết cho 8
. CMR : Hiệu các bình phương của hai số lẻ liên tiếp luôn chia hết cho 8
Hiệu các bình phương có hai số chẵn liên tiếp luôn chia hết cho 4
CMR: Hiệu các bình phương của hai số lẻ liên tiếp chia hết cho 8
Ta gọi 2 số lẻ liên tiếp đó là n+1;n+3
=> Hiệu hai bình phương hai số đó là:
(n+3)2-(n+1)2
=(n+3-n-1).(n+3+n+1)
=2.(2n+4)
=2.(2(n+2))
=2.2.(n+2)
=4.(n+2)
cmr vơi mọi n thuộc z thì
1,B=n^3-7n+19 không chia hết cho 6
2, Tổng bình phương của 2 số lẻ không chia hết cho 4
3,hiệu bình phương của hai số lẻ chia hết cho 8
4, n(n+2)(25n^2-1) chia hết cho 24
Câu 2
Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2
Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1
=4(K^2+K+H^2+H)+2
Vì 4(K^2+K+H^2+H) chia hết cho 4
=>4(K^2+K+H^2+H)+2 ko chia hết cho 4
Mk biết làm vậy thôi nha
Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8.
Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z).
Hiệu bình phương của hai số lẻ đó bằng:
(2a + 1)2 – (2b + 1)2
= (4a2 + 4a + 1) – (4b2 + 4b + 1)
= (4a2 + 4a) – (4b2 + 4b)
= 4a(a + 1) – 4b(b + 1)
Tích của hai số tự nhiên liên tiếp luôn chia hết cho 2
⇒ a.(a + 1) ⋮ 2 và b.(b + 1) ⋮ 2.
⇒ 4a(a + 1) ⋮ 8 và 4b(b + 1) ⋮ 8
⇒ 4a(a + 1) – 4b(b + 1) ⋮ 8.
Vậy (2a + 1)2 – (2b + 1)2 chia hết cho 8 (đpcm).
Cho hai số lẻ có hiệu lập phương chia hết cho 8. Chứng minh hiệu hai số đó cũng chia hết cho 8
Gọi 2 số lẻ liên tiếp là:
2k−1và
2k+1
Xét hiệu:
A=(2k+1)^2−(2k−1)^2
=4k^2+4k+1−(4k^2−4k+1)
=8k ⋮8
⇒A⋮8
hay hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8
CMR hiệu các bình phương 2 số lẻ bất kì thì chia hết cho 8
gọi số lẻ đầu tiên là 2n-1, => số lẻ tiếp theo là 2n+1
(2n+1)^2 - (2n-1)^2=(2n+1-2n+1)(2n+1+2n-1) = 2.4n=8n chia hết cho 8
Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8
Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)
Ta có:
(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)
= (4k+4).2
=8.(k+1)
Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8
\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)
Chứng minh rằng hiệu các bình phương hai số lẻ bất kì thì chia hết cho 8
Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
Gọi 2 số lẻ đó lần lượt là 2k+1 và 2a+1
(2k+1)2-(2a+1)2
= 4k2+4k+1-4a2-4a-1
= 4(k2+k+a2+a)
Như vậy ta đã chứng minh được nó chia hết cho 4 giờ ta chứng minh k2+k+a2+a chia hết cho 2,
Thật vậy ta có k2+k=k(k+1) ; a2+a=a(a+1)
Do 2 số tự nhiên liên tiếp luôn chia hết cho 2 suy ra a2+a và k2+k chia hết cho 2
Suy ra a2+a+k2+k chia hết cho 2
Như vậy bài toán được chứng minh
Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8
gọi 2 số lẻ bất kì lần lượt là 2a + 1 và 2a + 3
Cần chứng minh (2a + 1)2 - (2a + 3)2 chia hết cho 8
có: (2a + 1)2 - (2a + 3)2 = 4x2 + 4x + 1 - 4x2 - 12x - 9 = -8x - 8 = -8 (x + 1)
-8 (x + 1) chia hết cho 8
=> (đpcm)
Gọi 2 lẻ bất kì là a và b
Phải chứng minh a2-b2 chia hết cho 8
Do a2 và b2 là số chính phương nên chia 8 chỉ có thể dư 0;1 hoặc 4. Mà a, b lẻ nên a2 và b2 lẻ suy ra a2 và b2 chia 8 dư 1
Suy ra a2-b2 chia hết cho 8
Chứng tỏ hiệu các bình phương của 2 số lẻ bất kì thí chia hết cho 8
Trần Như: Nếu gọi 2 số lẻ bất kỳ thì ko gọi là 2a+1 và 2a+3 đc, vì đó chỉ là hai số lẻ liên tiếp thôi. :) Ta trình bày như sau:
Gọi hai số lẻ bất kì là \(2a+1\) và \(2b+1\)
Khi đó hiệu bình phương của hai số là \(A=\left(2a+1\right)^2-\left(2b+1\right)^2=4a^2+4a-4b^2-4b=4\left(a^2-b^2+a-b\right)=4\left(a-b\right)\left(a+b+1\right)\)
Ta thấy \(\left(a-b\right)\left(a+b+1\right)\) luôn chia hết cho 2 nên A luôn chia hết cho 8.
Soyeon làm như vậy cũng đc, ta sử dụng đồng dư :)