cho \(0\le a\le2,0\le b\le2,0\le c\le2\) và a+b+c=3.chứng minh \(a^2+b^2+c^2\le5\)
cho 0 \(\le a\le2,0\le b\le2,0\le c\le2\)và a+b+c=3. Chứng minh a^2+b^2+c^2bé hơn hoặc bằng 5
cho 3 số a,b,c sao cho \(0\le a\le2;0\le b\le2;0\le c\le2\)
và a+b+c=3. chứng minh rằng \(a^2+b^2+c^2\le5\)
Cho 3 số a, b, c sao cho :
\(0\le a\le2\); \(0\le b\le2\); \(0\le c\le2\) và a + b + c = 3.
Chứng minh rằng : \(a^2+b^2+c^2\le5\).
cho \(0\le a\le2;0\le b\le2;0\le c\le2\) và a+b+c=3. Chứng minh a^2+b^2+c^2\(\le\)5
Vì \(0\le a\le2;0\le b\le2;0\le c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\ge4\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)
\(\Rightarrow\)\(2\left(ab+bc+ca\right)\ge4\)
\(\Leftrightarrow-2\left(ab+bc+ca\right)\le-4\)
Ta có :
\(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\Rightarrowđpcm\)Đẳng thức xảy ra khi
\(\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\)
\(\left[{}\begin{matrix}2-a=0\\2-b=0\\2-c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
cho \(0\le a,b,c\le2\)và a+b+c=3
chứng minh \(^{a^3+b^3+c^3\le5}\)
Cho \(0\le a,b,c\le2\)và a + b + c = 3 . CMR : \(a^2+b^2+c^2\le5\).
từ gt \(\Rightarrow\)abc>0 => (2-a)(2-b)(2-c)>0 =>
8+2(ab+bc+ca)−4(a+b+c)−abc≥0 => 2(ab+bc+ca) \(\ge\)4 + abc \(\ge\)4
=> (a+b+c)^2≥4+a2+b2+c2 => a^2+b^2+c^2 \(\le\) 5
Cho các số thực a,b,c thỏa mãn: \(-1\le a\le2;-1\le b\le2;-1\le c\le2\) và \(a+b+c=0\)
Chứng minh \(a^2+b^2+c^2\le6\)
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị
Cho \(0\le a,b,c\le2\) và \(a+b+c=3\). Chứng minh rằng \(a^2+b^2+c^2\le5\).
cho \(-2\le a,b,c\le2\) và \(a+b+c=0\). chứng minh \(a^4+b^4+c^4\le32\)
Ta có \(\left(a+2\right)\left(b+2\right)\left(c+2\right)+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow4\left(ab+bc+ca\right)+16\ge0\)
\(\Leftrightarrow ab+bc+ca\ge-4\).
Lại có: \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=0\).
Do đó \(\left(ab+bc+ca\right)^2\le16\).
Mặt khác do \(a+b+c=0\) nên dễ dàng chứng minh được \(2\left(a^4+b^4+c^4\right)=\left(ab+bc+ca\right)^2\) (Bạn xem ở đây).
Do đó \(a^4+b^4+c^4\le32\) (đpcm).