Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê bảo ngân
Xem chi tiết
Yuu Shinn
4 tháng 12 2015 lúc 11:21

a) Ta thấy: 2 + 22 + 23 + 24 chia hết cho 6

suy ra tổng trên chia hết cho 6

suy ra đpcm

 

Vũ Thị Mai Linh
Xem chi tiết
VRCT_gnk_Thùy Linh
6 tháng 8 2016 lúc 12:28

A=2+2^2+2^3+...+2^2003+2^2004

        =1(2+2^2)+2^3(2+2^2)+...+2^2002(2+2^2)

        =(1+2^3+...+2^2002).6

    =>A chia hết cho 6.

Hồ Thu Giang
6 tháng 8 2016 lúc 12:29

A = 2 + 22 + 23 + 24 +.....+ 22004

A = (2 + 22) + (23 + 24) +.....+ (22003 + 22004)

A = 1(2 + 22) + 22(2 + 22) +.....+ 22002(2 + 22)

A = 6(1 + 22 +....+ 22002) chia hết cho 6

KL: A chia hết cho 6 (Đpcm)

Phạm Tiến Minh
31 tháng 10 2021 lúc 13:57
Tìm số tự nhiên n để (3n + 4) chia hết cho n-1
Khách vãng lai đã xóa
Lưu Thị Chúc
Xem chi tiết
Trần xuân hùng
20 tháng 12 2018 lúc 19:56

ai biet giup

Bạch Vĩ Yu
Xem chi tiết
Hiền Thương
8 tháng 4 2021 lúc 15:31

A = 2 + 22 + 23 + ...+ 230

A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 229 + 230 )

A = 2(1+2) + 23(1+2) + ....+ 229(1+2)

A = 2.3 + 23 . 3 + ...+ 229.3

A = 3(2+23 + ...+ 229\(⋮\) 3

Vậy  A chia hết cho 3 

Khách vãng lai đã xóa
Chu Quang Cần
Xem chi tiết
lucy heartfilia
Xem chi tiết
Nguyễn Ngọc Minh Thi
8 tháng 12 2016 lúc 21:29

a)A chia hết cho 6 vì trong A có 2+2^2=2+4=6 chia hết cho 6

b)A chia hết cho 7 vì trong A có 2+2^2+2^3=2+4+8=14 chia hết cho7

c)A chia hết cho 30 vì trong A có 2+2^2+2^3+2^4=2+4+8+16=30

FL.Hermit
15 tháng 8 2020 lúc 22:50

***** HIỂN NHIÊN    \(A⋮2\)     (1)

a)    \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)

\(A=2\left(2+1\right)+2^3\left(1+2\right)+...+2^{2003}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{2003}.3⋮3\)

=>    \(A⋮3\)      (2)

TỪ (1) VÀ (2) =>    \(A⋮6\)

VẬY TA CÓ ĐPCM.

b)     \(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)

=>   \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)

=>    \(A=2.7+2^4.7+...+2^{2002}.7⋮7\)

VẬY TA CÓ ĐPCM.

c)     TA CÓ:      \(A⋮6\left(cmt\right)\)      (3)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)

=>    \(A=2\left(1+2+2^2+2^3\right)+...+2^{2001}\left(1+2+2^2+2^3\right)\)

=>    \(A=2.15+....+2^{2001}.15⋮5\)

=>     \(A⋮5\)      (4)

TỪ (3) VÀ (4) =>     \(A⋮30\)

VẬY TA CÓ ĐPCM.

Khách vãng lai đã xóa
Yễn Nguyễn
Xem chi tiết
Quân Nguyễn Hồng
6 tháng 9 2015 lúc 17:31

Ta có:

A= 2+22+23+…+22004

A=2(1+2)+23(1+2)+…+22003(1+2)

Vậy A chia hết cho 3.

A=2(1+2+22) + 24(1+2+22)+…+22002(1+2+22).

Vậy A chia hết cho 7.

A=2(1+2+22+23)+25(1+2+22+23)+…+22001 (1+2+22+23)

Vậy A chia hết cho 15.

hieu
4 tháng 10 2015 lúc 20:15

thôi cả 2 bạn k nên bực bội với nhau làm j cho mất công tốn tg

Nguyễn thanh Quý
13 tháng 11 2016 lúc 22:07

A chia het cho 15 

de the  con gi
Nguyễn Hải Đăng
Xem chi tiết
phuchi binhhang
19 tháng 8 2015 lúc 14:26

\(A=\left(2+2^2\right)+...+\left(2^{2003}+2^{2004}\right)\)

\(A=2.\left(1+2\right)+...+2^{2003}.\left(1+2\right)\)

\(A=2.3+...+2^{2003}.3\)

=> A chia hết cho 3

Các cái còn lại tương tự

chứng minh chia hết cho 7 thì gộp 3 cái lại 1

chia hết cho 15 là gộp 4 cái lại

 

Hà My Trần
Xem chi tiết
Nguyễn Huy Hải
26 tháng 9 2015 lúc 13:41

a) 5+52+53+54+...+5100

= (5+52)+(53+54)+...+(599+5100)

= 30+52.(5+52)+...+598.(5+52)

= 30+52.30+...+598.30

= 30.(1+52+...+598)

Vì 30 chia hết cho 10

=> 30.(1+52+...+598) chia hết cho 10

=> 5+52+53+...+5100 chia hết cho 10