CMR: tồn tại 1 số chia hết cho 19991999 và có tổng các chữ số là 1999
cho 19 số tự nhiên liên tiếp. CMR: tồn tại 1 số có tổng các chữ số chia hết cho 10
Dùng nguyên lí Dirichle để giải các bài tập sau:
1) Viết 20 số tự nhiên vào 20 tấm bìa. CMR: Ta có thể chọn 1 hay nhiều tấm bìa để tổng các số đó chia hết cho 20
2) CMR: tồn tại 1 số tự nhiên chia hết cho 17
a) Gồm toàn chữ số 1 và chữ số 0
b) Gồm toàn chữ số 1
3) CMR: Tồn tại số tự nhiên k để 3k có 3 chữ số tận cùng là 001
4) CHo 51 số tự nhiên khác 0 và không vượt quá 100. CMR:
a) Mỗi số đều viết được 2k.b(k;b thuộc N, b lẻ, k có thể = 0). Xác định khoảng giá trị của k và b
b) Tồn tại 2 số mà số này là bội của số kia
CMR tồn tại 1 số tự nhiên chia hết cho 2009 có tổng các chữ số là 2010
Bạn nào giải được mik tick nha! Cảm ơn nhìu!
Ta có thể xây dựng cách phân tích thừa số đơn giản như sau: \(4018=2.2009\)
Từ đó, dễ dàng thành lập được một biểu thức số có dạng \(P=20092009...200940184018...4018\) luôn chia hết cho \(2009\) \(\text{(}\) với \(x\) là số các số \(2009,\) \(y\) là số các số \(4018\) \(\text{)}\)
Khi đó, tổng các chữ số cần tìm của \(P\) là \(\left(2+0+0+9\right).x+\left(4+0+1+8\right).y=11x+13y\)
Mặt khác, do \(P\) có tổng chữ số là \(2010\) hay nói cách khác \(11x+13y=2010\) \(\left(\alpha\right)\)
Ta phải cần tìm \(x,y\in Z^+\) để thỏa mãn điều kiện phương trình \(\left(\alpha\right)\) có nghiệm
Thật vậy, nhận thấy \(x=y=0\) không là nghiệm của phương trình \(\left(\alpha\right)\)
Do đó, từ \(\left(\alpha\right),\)suy ra \(x=\frac{2010-13y}{11}=183-y-\frac{2y+3}{11}\)
Để \(x\in N\) thì \(\frac{2y+3}{11}\in N\) tức là \(2y+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Với chú ý rằng \(2y+3>3\) (do \(y>0\) ), kết hợp với điều ở trên, ta suy ra được \(2y+3=11\)
Hay \(y=8\) \(\left(\beta\right)\)
Từ \(\left(\alpha\right),\) \(\left(\beta\right)\) dễ dàng tính được \(x=178\) \(\left(\text{ t/m ĐK}\right)\)
Vậy, với \(P=20092009...200940184018...4018\) \(\text{(}\) trong đó, có \(178\) số \(2009,\) \(8\) số \(4018\) \(\text{)}\) thì thỏa mãn yêu cầu đề bài đã cho, nghĩa là có ít nhất một số tự nhiên tồn tại chia hết cho \(2009\) với tổng các chữ số là \(2010\)
CMR tồn tại 1 số tự nhiên chia hết cho 2009 có tổng các chữ số là 2010 2009
1) CMR tồn tại 1 số gồm toàn chữ số 6 chia hết cho 2003
2)CMR tồn tại hay không 1 số tự nhiên só tận cùng là 2002 chia hết cho 2003
3) Cho 2001 số bất kì.CMR có thể chonk 1 hoặc 1 số số mà tổng của chúng chia hết cho 2001
4) Trong 1 tam giác đều cạnh là 1.Ta đặt 17 điểm kể cả trên các cạnh.CMR tồn tai 2 điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 1/4
CMR trong 1900 stn liên tiếp luôn tồn tại một số có tổng các chữ số chia hết cho 27
Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đpcm Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đpcm)
ghê đấy cũng biết hỏi bài cơ à
Có tồn tại số tự nhiên chia hết cho 2017 và có tổng các chữ số là 2017 không?
Chứng minh rằng có tồn tại một số chỉ gồm các chữ số 1 chia hết cho 1999.
Giúp mình với
Bài 1: CMR từ 102 số tự nhiên bất kì luôn có thể tồn tại 2 số có tổng hoặc hiệu chia hết cho 200.
Bài 2: CMR từ 10 số tự nhiên bất kì (a1, a2, a3, ... , a10) thì luôn tồn tại 4 số có tổng chia hết cho 4.
Bài 3: CMR từ 13 số tự nhiên bất kì luôn tồn tại 4 số có tổng chia hết cho 4.