Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Trang
Xem chi tiết
alibaba nguyễn
9 tháng 11 2016 lúc 16:19

\(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)

\(=\frac{x^2-\sqrt{x}-2x\sqrt{x}+2x}{x-\sqrt{x}+1}=\frac{\left(x-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}=x-\sqrt{x}\)

\(=\left(x-\frac{2\sqrt{x}}{2}+\frac{1}{4}\right)-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{4}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(\frac{-1}{4}\)đạt được khi x = \(\frac{1}{4}\)

rfgafd khánh
Xem chi tiết
Vũ Thị NGọc ANh
Xem chi tiết
Trần Thị Thảo Ngọc
Xem chi tiết
ĐẶNG QUỐC SƠN
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
Thân Gia Bảo
4 tháng 4 2016 lúc 18:30

?

?

?

?

?

?

?

?

?

?

?

?

?

?

ơơơ

ơ

ơ

ơ

ơ

ơ

ơ

ơ

Vũ Việt Anh
4 tháng 4 2016 lúc 19:37

????????????????????

pham trung hieu
4 tháng 4 2016 lúc 20:20

fgsfgsgggdg

Den Kay
Xem chi tiết
Kiệt Nguyễn
5 tháng 10 2020 lúc 11:58

\(ĐK:x>0\)

Ta có: \(\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}+1=2+1=3\)

Đẳng thức xảy ra khi \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\)

Khách vãng lai đã xóa
Cỏ dại
Xem chi tiết
Ngọc Nguyễn Ánh
Xem chi tiết
Phan Văn Hiếu
27 tháng 7 2017 lúc 21:13

đkxđ \(x\ne1;x\ge0\)

\(P=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(P=\frac{1}{\sqrt{x}-1}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(P=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x+\sqrt{x}+1-x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x+\sqrt{x}+2}{\left(\sqrt{x}\right)^3-1}\)

Ngọc Nguyễn Ánh
28 tháng 7 2017 lúc 10:28

bạn làm câu b được không ạ?