tìm nghiệm của đa thức: f(x) = 2019x - 5
a) Tính giá trị của đa thức f(x)=x^6 - 2019x^5 + 2019x^4 - 2019x^3 + 2019x^2 - 2019x + 1 tại x=2018.
b) Cho đa thức f(x)=ax^2 + bx + c với các hệ số a, b, c thõa mãn 11a - b + 5c =0. Chứng minh rằng f(1) và f(-2) không thể cùng dấu.
thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong
a)
Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)
\(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x+1\)
- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:
\(f\left(2018\right)=-2018+1=-2017\)
Vậy \(f\left(2018\right)=-2017\)
b) -\(Có\) :\(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^2+b.1+c=a+b+c\\f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=4a-2b+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3.f\left(1\right)=3\left(a+b+c\right)=3a+3b+3c\\2.f\left(-2\right)=2\left(4a-2b+c\right)=8a-4b+2c\end{cases}}\)
- Xét \(3.f\left(1\right)=3a+3b+3c\)
\(=\left(11a-8a\right)+\left(4b-b\right)+\left(5c-2c\right)\)
\(=11a-8a+4b-b+5c-c\)
\(=\left(11a-b+5c\right)-\left(8a-4a+2c\right)\)
\(=0-2.f\left(-2\right)\)
\(=-2.f\left(-2\right)\)
\(\Rightarrow3.f\left(1\right)=-2.f\left(-2\right)\)
\(\Rightarrow3.f\left(1\right),2.f\left(-2\right)\)trái dấu nhau
\(\Rightarrow f\left(1\right)\)và \(f\left(-2\right)\)không cùng dấu \(\left(đpcm\right)\)
Tìm nghiệm của đa thức C(x)= x^4 + 2019x^2 +2020
Tìm nghiệm của đa thức
2019x^2 + x +2020
( Mong các cậu giúp đỡ. Mình cảm ơn rất nhiều ạ)
\(2019x^2+x+2020=0\)
\(\Leftrightarrow2019\left(x^2+\frac{x}{2019}+\frac{2020}{2019}\right)=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4038}+\frac{1}{4038^2}+\frac{2020}{2019}-\frac{1}{4038^2}=0\)
\(\Leftrightarrow\left(x+\frac{1}{4038}\right)^2+\frac{2020\cdot8076-1}{4038^2}=0\)
\(\Leftrightarrow\left(x+\frac{1}{4038}\right)^2=-\frac{2020\cdot8076-1}{4038^2}\)(1)
Vì \(2020\cdot8076-1>0\Rightarrow\frac{2020\cdot8076-1}{4038^2}>0\)
\(\Rightarrow-\frac{2020\cdot8076-1}{4038^2}< 0\)(2)
Từ (1) và (2) suy ra đa thức vô nghiệm
\(\)
Cho đa thức f(x)=(1+26x^2+4x^2+2019x^3....2050x^5)^10
1
Tính giá trị đa thức
f(x)=-x+2019x2018-2019x207+.....-2019x2-2019x+2019
tại x=2018
Sửa đề nha :
f(x) = -x2019 + 2019x2018 - 2019x2017+...- 2019x2 + 2019x + 2019
Ta có : 2019 = 2018 + 1 = x + 1
=> f(x) = -x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... - ( x + 1 )x2 + ( x + 1 )x + 2019
= -x2019 + x2019 + x2018 - x2018 - x2017 + ... - x3 - x2 + x2 + x + 2019
= x + 2019
= 4037
Study well ! >_<
Bạn Hồng Anh làm sai rồi Ở -2019x (dấu trừ sao bạn đổi thành cộng ??)
Kq =1 nha (-2018+2019)
Hok tốt
Cho đa thức f(x) thỏa mãn: (x-1).f(x)=(x+2).f(x+3) với mọi x tìm 5 nghiệm của đa thức f(x)
cho đa thức f(x) thỏa mãn: (x-1).f(x)=(x+2).f(x+3) với mọi x tìm 5 nghiệm của đa thức f(x)
Cho đa thức f(x)=ax^2+bx+5. Tìm a,b biết nghiệm của đa thức f(x) là 1và-2
Vì nghiệm của f(x) là 1 nên
Thay 1 vào đa thức f(x) ta được
\(f\left(1\right)=a+b+5=1\Leftrightarrow a+b=-4\)(1)
Vì nghiệm của f(x) là -2 nên
Thay -2 vào đa thức f(x) ta được
\(f\left(-2\right)=4a-2b+5=-2\Leftrightarrow4a-2b=-7\)(2)
Từ (1) và (2) ta có hệ sau : \(\left\{{}\begin{matrix}a+b=-4\\4a-2b=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-4-b\left(1\right)\\4a-2b=-7\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2) ta được : \(4\left(-4-b\right)-2b=-7\Leftrightarrow-16-4b-2b=-7\Leftrightarrow-6b=9\Leftrightarrow b=-\dfrac{3}{2}\)
\(\Rightarrow a=-4+\dfrac{3}{2}=\dfrac{-5}{2}\)
Vậy a = -5/2 ; b = -3/2
b) Cho đa thức f(x) = x2 - 5x - 35. Chứng tỏ x = -5 là nghiệm của đa thức f(x) và
x = 5 không là nghiệm của đa thức f(x).
Cái nào cũng không phải là nghiệm hết ạ;-;