Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen minh thu
Xem chi tiết
Vũ Ngọc Gà
28 tháng 3 2016 lúc 22:48

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

Kurosaki Akatsu
Xem chi tiết
Đinh Đức Hùng
15 tháng 2 2017 lúc 16:45

\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)

Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN

Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5

Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5

uzumaki naruto
15 tháng 2 2017 lúc 16:35

x=5;A=2001

tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu

Cô nàng cá tính
Xem chi tiết
nhoc quay pha
10 tháng 8 2016 lúc 20:20

\(A=\frac{2006-x}{6-x}=1\frac{2000}{6-x}\)

=> để A đạt gia trị lớn nhất thì 6-x phải đạt giá trị nhỏ nhất (>0) và x khác 6

A lớn nhất khi 6-x nên => 6-x=1

=> x=5

giá trị lớn nhất của A khi đó là:

A=(2006-5)/(6-5)=2001

Cô nàng cá tính
Xem chi tiết
Khanh Lê
10 tháng 8 2016 lúc 20:51

\(A=\frac{6-x+2000}{6-x}=1+\frac{2000}{6-x}\)

A đạt GTLN \(\frac{2000}{6-x}\)đạt GTLN

\(\frac{2000}{6-x}\)đạt GTLN 6x đạt GTNN 

Ta có  6x1

Dấu = xảy ra x=5⇔x=5

Do đó GTLN của A \(=1+\frac{2000}{1}=2000+1=2001\)

Vậy GTLN của A là 2001 x=5

Cô nàng cá tính
Xem chi tiết
Khanh Lê
10 tháng 8 2016 lúc 20:47

\(A=\frac{2000+6-x}{6-x}=1+\frac{2000}{6-x}\)

A đạt GTLN \(\Leftrightarrow\frac{2000}{6-x}\)đạt GTLN

\(\frac{2000}{6-x}\)đạt GTLN \(\Leftrightarrow6-x\) đạt GTNN 

Ta có  \(6-x\ge1\)

Dấu = xảy ra \(\Leftrightarrow x=5\)

Do đó GTLN của A \(=1+\frac{2000}{1}=2001\)

Vậy GTLN của A là 2001 \(\Leftrightarrow x=5\)

Nguyễn Lê Nhật Linh
Xem chi tiết
Lương Ngọc Anh
14 tháng 5 2016 lúc 17:15

Mik làm tóm tắt:

ta có P=|x-2006|+|2007-x|+2006>=x-2006+2007-x+2006=2007

vậy min P=2007 khi:

x-2006>=0 và 2007-x>=0

=> 2006<=x<=2007

Lê Thị Ngọc Minh
Xem chi tiết
Hien Le
Xem chi tiết
o0o I am a studious pers...
5 tháng 8 2016 lúc 16:41

\(A=2006-\frac{x}{6-x}\le2006\)

Min \(A=2006\Leftrightarrow\frac{x}{6-x}=0\Rightarrow x=0\)

\(B=\left|x-2001\right|+\left|x+1\right|\ge0\)

Min \(B=0\Leftrightarrow\hept{\begin{cases}x-2001=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2001\\x=-1\end{cases}}}\)

moon
Xem chi tiết
zZz Cool Kid_new zZz
10 tháng 12 2019 lúc 23:32

Ta có:

\(\left(x-\frac{1}{2}\right)^2\ge0;\left|3x+2y\right|\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|\ge0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|+2006\ge2006\)

Dấu "=" xảy ra tại \(\hept{\begin{cases}x-\frac{1}{2}=0\\3x=-2y\end{cases}}\Rightarrow x=\frac{1}{2};y=-\frac{3}{4}\)

Vậy \(A_{min}=2006\Leftrightarrow x=\frac{1}{2};y=-\frac{3}{4}\)

Khách vãng lai đã xóa