\(\frac{x}{4}=\frac{y}{6}\)và xy=24
Tìm x: a) \(\frac{x}{y}=\frac{3}{5}\) và x-y =6 b) \(\frac{x}{2}=\frac{y}{3}\) và xy=24
Đặt k = \(\frac{x}{2}=\frac{y}{3}\)
Khi đó : k2 \(=\frac{xy}{2.3}=\frac{24}{6}=4\)
Suy ra : k = -2 ; 2
+ k = - 2 thì x = -4
y = -6
+ k = 2 thì x = 4
y = 6
Vậy ...........................................
<br class="Apple-interchange-newline"><div id="inner-editor"></div>x2 =y3
Khi đó : k2 =xy2.3 =246 =4
Suy ra : k = -2 ; 2
+ k = - 2 thì x = -4
y = -6
+ k = 2 thì x = 4
y = 6
Vậy ...........................................
đúng nha bn
a) Ta có:
\(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{6}{-2}=-3\)
=> \(\frac{x}{3}=-3\)=>\(x=-9\)
\(\frac{y}{5}=-3\)=> \(y=-15\)
Vậy \(x=-9;y=-15\)
b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)=> \(x=2k;y=3k\)
Thay \(x=2k;y=3k\)vào biểu thức \(xy=24\)ta được:
\(2k.3k=24\)
\(k^2.6=24\)
\(k^2=4\)
=> \(k=2\)hoặc \(k=-2\)
Với \(k=2\)
=>\(x=2.2=4\)
=>\(y=3.2=6\)
Với \(k=-2\)
=>\(x=2.\left(-2\right)=-4\)
=>\(y=3.\left(-2\right)=-6\)
Vậy \(x=4;y=6\)và \(x=-4;y=-6\)
cho biểu thức: \(P=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\) \(P=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+1}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right).\backslash\ \)với \(x,y\ge0;x,y\ne1\)
a) Rút gọn P
b) Tính P khi \(x=\sqrt[3]{4-2\sqrt{6}}+\sqrt[3]{4+2\sqrt{6}}\)và \(y=x^2+6\)
a/ \(P=\frac{1}{\sqrt{xy}}\)
b/ \(x^3=8-6x\)
\(\Rightarrow P=\frac{1}{\sqrt{x\left(x^2+6\right)}}=\frac{1}{\sqrt{x^3+6x}}=\frac{1}{\sqrt{8-6x+6x}}=\frac{1}{2\sqrt{2}}\)
Tìm x, y, z biết:
a. \(2x=3y;5x=7z\) và \(3x-7y+5z=40\)
b.\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và \(5x-3y-4z=20\)
c.\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\)và \(xy=1200\)
ta có: 2xx=3y=>x/3=y/2=>x/21=y/14 ; x/7=z/5=>x/21=z/15 =>x/21=y/14=z/15=>3x/63=7y/98=5z/75 ADTCDTSBN ta có 3x/63=7y/98=5z /75=3x-7y+5z=40/63-98+75=40=1 3x=1.63=63 =>x=21 ;7y=1.98=98=>y=14 ; 5z=1.75=>z=15
\(\frac{x}{3}=\frac{y}{4}và\frac{y}{6}=\frac{z}{5}va3x-2y+5z=86\)
\(\frac{x}{5}=\frac{y}{7};xy=140\)
\(\frac{x-1}{9}+\frac{x-2}{8}=\frac{x-3}{7}+\frac{x-4}{6}\)
\(\frac{31-2x}{x+23}=\frac{9}{4}\)
\(4x=5y;xy-80=0\)
\(\frac{x+3}{8}-\frac{2}{x-3}\)
\(\frac{x^2}{6}=\frac{14}{25}\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{6}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}\)
Ta có : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{10}=\frac{3x}{27}=\frac{2y}{24}=\frac{5z}{50}=\frac{3x-2y+5z}{27-24+50}=\frac{86}{53}\) (đề sai)
b) Đặt : k = \(\frac{x}{5}=\frac{y}{7}\)
=> k2 \(=\frac{x}{5}.\frac{y}{7}=\frac{xy}{35}=\frac{140}{35}=4\)
=> k = -2;2
+ k = 2 thì \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{z}{7}=2\Rightarrow z=14\)
+ k = -2 thì \(\frac{x}{5}=2\Rightarrow x=-10\)
\(\frac{z}{7}=2\Rightarrow z=-14\)
Vậy................................
Áp dụng BĐT Cauchy:
[TEX]xyz\geq (x+y-z)(y+z-x)(x+z-y)=(6-2x)(6-2y)(6-2z) \\ =216-72(x+y+z)+24(xy+yz+zx)-8xyz=24(xy+yz+xz)-8xyz-216 \\ \Rightarrow 9xyz\geq 24(xy+yz+xz)-216 \\ \Rightarrow xyz\geq \frac{8}{3}(xy+yz+xz)-24 \\ \Rightarrow x^{2}+y^2+z^2-xy-yz-zx+xyz\geq x^{2}+y^2+z^2+\frac{5}{3}(xy+yz+zx)-24 \\ \Leftrightarrow (x+y+z)^{2}-\frac{1}{3}( xy+yz+zx)-24\geq (x+y+z)^{2}-24-\frac{1}{9}(x+y+z)^{2}=8[/TEX]
Dấu "=" xảy ra khi [TEX]x=y=z=2[/TEX]
8,Thực hiện phép tính
a,\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
b,\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
c,\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
d,\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
e,\(\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
f,\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
Tìm x,y,z biết :\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\) và xy=1200
MÌNH KO BIẾT ĐÚNG KO ĐÂU NHA
pt :15/(x-9)=20/(y-12) <=> 60/(4x-36)=60/(3y-36) : (Quy đồng mẫu)
=> 4x=3y
<=> x= 3y/4
kết hợp với xy= 1200 => x=30 hoặc x=-30 =>y =+-40
thế x hoặc y vào pt ban đàu ta có z= 80 (pt là phân tích, mìh ko bít gõ phân số nên thông cảm :D)
Tìm x,y ,z biết :\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\) và xy=1200
Ta có : 15/(x-9)= 20/(y-12)
<=> 15(y-12) = 20(x-9)
<=> 15y - 180 = 20x - 180
<=> 3y = 4x
<=> y = 4/3x
Do xy = 1200
=> 4/3. x^2 = 1200
=> x^2 = 1200 : 4/3
=> x^2 = 900
<=> x = 30
<=> y = 40
<=> 5/7 = 40/(z-24)
<=> 80 = z
=> x=30 ; y=40 ; z=80
Tìm x , y sao cho \(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-24}\) và xy = 1200
Nhìu kết quả lắm vì có rất nhiều số nhân với nhau = 1200 nhé