Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chì xanh
Xem chi tiết
Hoàng Phúc
10 tháng 7 2016 lúc 21:35

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\),đặt \(\frac{a}{c}=\frac{b}{d}=k=>a=ck;b=dk\)

Ta có: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}=\frac{c^2k^2+c^2}{d^2k^2+d^2}=\frac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{c^2}{d^2}=\left(\frac{c}{d}\right)^2\left(1\right)\)

\(\frac{a.c}{b.d}=\frac{ck.c}{dk.d}=\frac{c^2k}{d^2k}=\frac{c^2}{d^2}=\left(\frac{c}{d}\right)^2\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a^2+c^2}{b^2+d^2}=\frac{a.c}{b.d}\left(đpcm\right)\)
 

o0o I am a studious pers...
10 tháng 7 2016 lúc 21:10

\(\frac{a}{b}=\frac{c}{d}\)

\(=>\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)

\(=\frac{a.c}{b.d}\)

Vũ Thị Hoa
Xem chi tiết
Xyz OLM
9 tháng 10 2019 lúc 22:24

Từ \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)

\(d^2=ac\Rightarrow\frac{c}{d}=\frac{d}{a}\left(3\right)\)

Từ (1) (2) (3) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow a=b=c=d\)

Khi đó M = \(\frac{a}{b+c+d}+\frac{b}{a+c+d}=\frac{a}{3a}+\frac{a}{3a}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)

Vậy \(M=\frac{2}{3}\)

My Good Friends
Xem chi tiết
Kẻ Vô Danh
21 tháng 7 2016 lúc 9:42

Ta có: b2=a.c => \(\frac{a}{b}=\frac{b}{c}\)(1)

          c2=b.d =>\(\frac{b}{c}=\frac{c}{d}\)(2)

Từ (1), (2) => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

               =>\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)

               => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( tính chất dãy tỉ số bằng nhau)

LÊ HUY ANH
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 2 2020 lúc 19:50

\(b^2=ac;c^2=bd\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c};\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đến đây có 2 cách:

Cách 1:Đặt k.Dài,tự làm

Cách 2:

Áp dụng DTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

Khách vãng lai đã xóa
IS
21 tháng 2 2020 lúc 19:56

ta có \(b^2=ac=\frac{a}{b}=\frac{b}{c}\) (1)

\(c^2=bd=\frac{b}{c}=\frac{c}{d}\left(2\right)\)
từ (1) and (2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(3\right)\)

ta lại có \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(4\right)\)

từ (3) and (4) =>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(dpcm\right)\)

Khách vãng lai đã xóa
Chu Công Đức
22 tháng 2 2020 lúc 8:51

Từ \(b^2=ac\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)(1)

    \(c^2=bd\)\(\Rightarrow\frac{b}{c}=\frac{c}{d}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\)( vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\))

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( cùng bằng \(\left(\frac{a}{b}\right)^3\)) ( đpcm )

Khách vãng lai đã xóa
Ngô Phương Anh
Xem chi tiết
Nguyễn Thùy Trang
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 10 2021 lúc 14:15

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\\ \dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)

Pham Thanh Xuan
Xem chi tiết
Girl
8 tháng 2 2019 lúc 18:59

Ta có: \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=t\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=t^3\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=t^3\)(1)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}=t\Rightarrow\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=t^3\)(2)

(1); (2) => đpcm

Moon_Phạm
Xem chi tiết
kaitovskudo
29 tháng 11 2015 lúc 20:58

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

=>\(\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)

=>\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a}{b}.\frac{c}{d}\)

=>\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)             ( theo t/c dãy tỉ số bằng nhau)

=>\(\frac{ab}{bc}=\frac{a^2+c^2}{b^2+d^2}\)                          (đpcm)

Kỉ niệm tuổi thơ
29 tháng 11 2015 lúc 21:12

Hình như (a2)/(b2) và (c2)/(d2) không bằng (a/b).(c/d) thì phải.