Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bạch Dạ Y
Xem chi tiết
KhangCVn
11 tháng 9 2021 lúc 22:01

Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)

Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)

=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)

Khách vãng lai đã xóa
Thiên bình cute
Xem chi tiết
Girl
14 tháng 12 2018 lúc 5:12

\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)

Thay x=y=z vào r tính thôi bạn

Nhật Vy Nguyễn
Xem chi tiết
Nhật Vy Nguyễn
20 tháng 2 2018 lúc 13:43

đáp án

Không có văn bản thay thế tự động nào.

Phan Nghĩa
8 tháng 1 2021 lúc 20:10

chia cả 2 vế của giả thiết cho xyz rồi đặt 1/x ; 1/y ; 1/z => a ; b ; c

đến đây thì tự làm tiếp đi 

Khách vãng lai đã xóa
Phạm Huy Bảo Long
Xem chi tiết
kiss you
Xem chi tiết
kagamine rin len
2 tháng 1 2016 lúc 21:47

ta có x/xy+x+1 +y/yz+y+1 +z/xz+z+1

=xz/xyz+xz+z +xyz/xyz^2+xyz+xz +z/xz+z+1

=xz/1+xz+z +1/z+1+xz +z/ xz+z+1

=xz+z+1 /xz+z+1 =1

huongkarry
Xem chi tiết
Đinh Đức Hùng
7 tháng 7 2018 lúc 12:45

\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}=\frac{\sqrt{5\left(z-5\right)}}{\sqrt{5}z}+\frac{\sqrt{4\left(x-4\right)}}{2y}+\frac{\sqrt{3\left(x-3\right)}}{\sqrt{3}x}\)

Áp dụng BĐT Cosi ta có : \(A\le\frac{\frac{5+z-5}{2}}{\sqrt{5}z}+\frac{\frac{4+y-4}{2}}{2y}+\frac{\frac{3+x-3}{2}}{\sqrt{3}x}=\frac{\sqrt{5}}{10}+\frac{1}{4}+\frac{\sqrt{3}}{6}\)

Dấu "=" xảy ra \(\Leftrightarrow z=10;y=8;x=6\)

Ngô Hồng Thuận
Xem chi tiết
Mr Lazy
31 tháng 7 2016 lúc 19:40

\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}\)

Áp dụng bất đẳng thức Côsi:

\(z=z-5+5\ge2\sqrt{5.\left(z-5\right)}\)

\(\Rightarrow\frac{\sqrt{z-5}}{z}\le\frac{1}{2\sqrt{5}}\)

Dấu bằng xảy ra khi \(z-5=5\Leftrightarrow z=10\)

tương tự x, y.

Steolla
2 tháng 9 2017 lúc 8:32

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Ngô Hồng Thuận
Xem chi tiết
Nguyễn Tuấn
31 tháng 7 2016 lúc 20:27

đề thiếu điều kiện

Hasuku Yoon
Xem chi tiết