Cho x>1,y>1.
CM: P= \(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\cdot\left(x-1\right).\left(y-1\right)}\ge8.\)
\(\frac{1}{\left(x+y\right)^2}\cdot\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^{\text{4}}}\cdot\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)\)
Giúp vs cần gấp
Thiếu điều kiện xy = 1; x+y khác 0 nhá bn
Bài này tương tự câu 1 ở đây
Rút gọn:
\(\frac{1}{\left(x+y\right)^3}\cdot\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\cdot\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)\)
CM các đẳng thức sau:
\(\left[\frac{x+2}{x+1}-\frac{4\cdot\left(y+1\right)}{y+2}\right]:\left[\frac{x^2\cdot\left(y+1\right)}{y+1}-\frac{y^2\cdot\left(x+2\right)}{y+2}\right]=\frac{1}{y-x}\)
cho x>1 và y>1. CMR:
\(\frac{\left(x^3+y^3\right)-\left(x^2-y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)
\(\frac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)
\(\Leftrightarrow\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)
\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
By Titu's Lemma we have:
\(LHS\ge\frac{\left(x+y\right)^2}{x+y-2}\) and we need prove that:
\(\left(x+y\right)^2\ge8\left(x+y\right)-16\)
But the last inequalities is true. ( QED )
Rút gọn: \(\frac{x^2}{\left(x+y\right)\cdot\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\cdot\left(1+x\right)}-\frac{x^2\cdot y^2}{\left(x+1\right)\cdot\left(1-y\right)}\)
MTC: (x+y)(x+1)(1-y)
\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)
\(=x-y+xy\)
Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định
cho x và y là các số thực >1 chứng minh: \(\frac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)
a) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức: \(B=\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
b) Tìm x, y, z biết:
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
\(\frac{2}{3}x^2y\left(2x^2-\frac{y}{3}\right)-2x^2\left(2x^2-1\right)+\left(2x^2-1\right)\cdot\left(2x^2-\frac{y}{3}\right)\cdot\left(1-\frac{y}{3}\right)\)
cho x,y,z thuộc R, thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) tính M=\(\frac{3}{4}+\left(x^2-y^2\right)\cdot\left(y^3+z^3\right)\cdot\left(z^4-x^4\right)\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).
Vậy \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)