Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ABC
Xem chi tiết
Thiên An
24 tháng 6 2017 lúc 21:59

Thiếu điều kiện xy = 1; x+y khác 0 nhá bn

Bài này tương tự câu 1 ở đây

Kẻ Vô Danh
Xem chi tiết
5511532514
Xem chi tiết
Xem chi tiết
zZz Cool Kid_new zZz
17 tháng 7 2020 lúc 10:22

\(\frac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)

\(\Leftrightarrow\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)

\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)

By Titu's Lemma we have:

\(LHS\ge\frac{\left(x+y\right)^2}{x+y-2}\) and we need prove that:

\(\left(x+y\right)^2\ge8\left(x+y\right)-16\)

But the last inequalities is true. ( QED )

Khách vãng lai đã xóa
Nguyễn Minh Đức
Xem chi tiết
Đặng Ngọc Quỳnh
2 tháng 10 2020 lúc 18:10

MTC: (x+y)(x+1)(1-y)

\(=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}=\frac{\left(x+y\right)\left(1+x\right)\left(1-y\right)\left(x-y+xy\right)}{\left(x+y\right)\left(1+x\right)\left(1-y\right)}\)

\(=x-y+xy\)

Với \(x\ne-1;x\ne-y;y\ne1\)thì giá trị biểu thức được xác định

Khách vãng lai đã xóa
Vũ Lê Hồng Nhung
Xem chi tiết
Nguyen Ngoc Minh Ha
Xem chi tiết
Nguyễn Anh Bảo
Xem chi tiết
Đào Thị Bạch Cúc
Xem chi tiết
Lã Nguyễn Gia Hy
4 tháng 9 2017 lúc 23:28

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).

Vậy  \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)

Đào Thị Bạch Cúc
5 tháng 9 2017 lúc 16:47

thank Gia Hy