tìm các số nguyên x,y thỏa mãn:x^2+y^2+5x^2.y^2+60=37xy
Tìm các số nguyên \(x,y\) thỏa mãn: \(x^2+y^2+5x^2y^2+60=37xy\)
Tìm các số nguyên x, y thỏa mãn:
\(x^2+y^2+5x^2y^2+60=37xy\)
\(PT\Leftrightarrow x^2-2xy+y^2=35xy-5x^2y^2-60\)
\(\Leftrightarrow\left(x-y\right)^2=5\left(3-xy\right)\left(xy-4\right)\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\) nên \(5\left(3-xy\right)\left(xy-4\right)\ge0\Leftrightarrow3\le xy\le4\)
\(\Rightarrow\hept{\begin{cases}x;y\in\left\{3;4\right\}\\x=y\end{cases}}\) \(\Rightarrow\left(x;y\right)\in\left\{\left(2;2\right);\left(-2;-2\right)\right\}\)
Tìm tất cả các số nguyên x,y thỏa mãn \(x^2+y^2+5x^2y^2+60=37xy\)
Ta có
PT <=> (1 + 5y2)x2 - 37yx + y2 + 60 = 0
Xét pt theo ẩn x ta có để pt có nghiệm thì
∆\(\ge0\)
<=> (37y)2 - 4(1 + 5y2)(y2 + 60) \(\ge0\)
<=> - 20y4 + 165y2 - 240\(\ge0\)
<=> 1 < y2 < 7
=> y2 = 4
=> y = (2;-2)
=> x = (2;-2)
tìm các số nguyên x,y thỏa mãn: \(^{x^2+y^2+5x^2y^2+60=37xy}\)
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
xong nha
tìm các số nguyên x, y thỏa mãn : x2 +y2+5x2y2\(x^2+y^2+5x^2y^2+60=37xy\)
Trả lời
Xem như phương trình bậc 2 ẩn x
\(x^2+y^2+5\left(xy\right)^2+60=37xy\)
\(\Leftrightarrow\left(1+5y^2\right)\cdot x^2-37xy+60+y^2=0\)
Denta=\(37^2\cdot y^2-4\cdot\left(60+y^2\right)\cdot\left(1+5y^2\right)\)
\(=-20y^4+165y^2-240=0\)
\(\Rightarrow1< y^2< \pm2\)
Với \(y=2\Rightarrow x=2\)(thỏa mãn)
Với \(y=-2\Rightarrow x=-2\)(thỏa mãn)
Vậy....
Tìm các số nguyên x, y thỏa mãn :
x2 + y2 + 5x2y2 + 60 = 37xy
em như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
tìm các số nguyên x,y thỏa mãn : x2 + y2 + 5x2y2 + 60 = 37xy
Trả lời
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
giải như sau:@_@
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
\(x^2+y^2+5x^2y^2+60=37xy\)
\(\Leftrightarrow x^2\left(1+5y^2\right)-3xy+\left(y^2+60\right)=0\)
\(\Leftrightarrow\Delta=-20y^4+165y^2-240\)
\(\Leftrightarrow20y^4-165y^2+240\le0\)
\(\text{Ma: }xy\inℤ\Rightarrow0\le y^2\le6\)
\(\Rightarrow xy\in\left\{\pm1;\pm2\right\}\)
Tìm các số nguyên x,y thõa mãn x2 + y2+ 5x2y2 + 60 = 37xy
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn
Tìm x,y nguyên :
x2 + y2 + 5x2y2 + 60 = 37xy
Trả lời
5.494−54(2xy−7)2" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax">5.494−54(2xy−7)2
⇔[2(x−y)]2+5(2xy−7)2=5.49−60.4=5
x;y∈Z;2xy−7≠0;5(2xy−7)2≥5⇒[2(x−y)]2=0→x=y
|(2xy−7)|=1 [2x2−7=−1;x2=3(l)2x2−7=1;x2=4(n)⇔(x;y)=(±2;±2)