chứng tỏ rằng 1257 . 259 . 520 chia hết cho 101
chứng tỏ rằng: 125^7 . 25^9 . 5^20 chia hết cho 101
chứng tỏ rằng 125^7 + 25^9 - 5^20 chia hết cho 101
Chứng tỏ rằng : 5 mũ 20 + 25 mũ 11 + 125 mũ 7 chia hết cho 31.
\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31
5^20+25^11+125^7=5^20+(5^2)^11+(5^3)^7= 5^20+5^22+5^21=5^20(1+5^2+5)=5^20.31
Vậy 5^20+25^11+125^7 chia hết cho 31
Chứng tỏ rằng: 520+ 2511+ 1257 chia hết cho 31
ta có(^ là dấu mũ):
5^20+25^11+125^7=5^20+5^22+5^21
=5^20+5^20.5^2+5^21.5
=5^20.(1+5^2+5)=5^20.(1+25+5)=5^20.31 chia hết cho 31
Nếu sai chỗ nào thì nhắc mik nhé :)
\(5^{20}+25^{11}+125^7=5^{20}+5^{2^{11}}+5^{3^7}=5^{20}+5^{22}+5^{21}=5^{20}+5^{20}.5^2+5^{20}.5=5^{20}\left(5^2+5+1\right)=5^{20}.31\)Vì \(5^{20}.31⋮31\) nên \(\left(5^{20}+25^{11}+125^7\right)⋮31\)
Cho A=53+54+55+56+57+58+59+510
a,Chứng tỏ rằng A chia hết cho 125
b, Chứng tỏ A chia hết cho 30
Ra A= 5^11-5^3
Vì 5^11chia hết 125
5^3 chia hết cho125
=> 5^11-5^3 chia hết cho125
Cho M =125^7 - 625^5 - 25^9 Chứng minh M chia hết cho 9
M = 1257 - 6255 - 259
M = ( 53 )7 - ( 54 )5 - ( 52 )9
M = 521 - 520 - 518
M = 518 . ( 53 - 52 - 1 )
M = 518 . 99
M = 518 . 9 . 11 \(⋮\)9
chứng tỏ rằng
\(\left(5^{61}+25^{31}+125^{21}\right)\) chia hết cho 31
5^61 + 25^31 + 125^21
= 5^61 + 5^62 + 5^63
= 5^61 x (1+5+25)
= 5^61 x 31 chia hết 31
5^61 + 25^31 + 125^21
= 5^61 + 5^62 + 5^63
= 5^61 x (1+5+25)
= 5^61 x 31 chia hết 31
Chứng minh :125^7-625^5-25^9 chia hết cho 11
a)Tính nhanh: A= 1+5+9+13+...+101
b)Cho B = 1+2+22+24+25+26+27+28+29+210+211.
Chứng tỏ B chia hết cho 7
c)Rút gọn biểu thức C = 1+2+22+23+24+...+299.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
3/
$C=1+2+2^2+2^3+...+2^{99}$
$2C=2+2^2+2^3+2^4+...+2^{100}$
$\Rightarrow 2C-C=2^{100}-1$
$\Rightarrow C=2^{100}-1$