Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thế Hưng
Xem chi tiết
Đinh Sơn Tùng
21 tháng 11 2023 lúc 18:37

Để tính tổng 11009×2016+11010×2015+…+12015×1010+11016×1009, ta có thể sử dụng một số kỹ thuật trong toán học. Trong trường hợp này, ta sẽ sử dụng tích phân.

Gọi là tổng cần tính, ta có thể viết nó dưới dạng tổng tỉ lệ:

�=11009×2016+11010×2015+…+12015×1010+11016×1009

Ta nhận thấy mẫu số của mỗi phân số đều có dạng (�+�)×(�−�), với �=1012�=3025. Ta có thể thực hiện một phép biến đổi để làm cho công thức trở nên đơn giản hơn:

�=1(�−3)×(�+3)+1(�−2)×(�+2)+…+1(�+3)×(�−3)

Giờ ta có thể sử dụng kỹ thuật tích phân để tính toán tổng . Phép biến đổi này giúp ta chuyển từ một tổng phức tạp sang một tổng tích phân dễ tính.

�=∫�−3�+31�×(�−�) ��

Việc tích phân này có thể được thực hiện bằng cách sử dụng phương pháp tích phân bằng logarit hoặc phương pháp phân giải thành phân số đơn giản. Để thực hiện cụ thể, bạn có thể sử dụng các công cụ tính toán hoặc phần mềm tính toán.

bo nguyen dien
Xem chi tiết
Bang Lang Nguyen
Xem chi tiết
Phạm Thị Thanh Thủy
29 tháng 4 2016 lúc 17:51

Chỉ so sánh được thôi k tính được bạn akvui

Tài Nguyễn Tuấn
29 tháng 4 2016 lúc 19:03

Theo mình thì đề bài đầy đủ là như thế này : 

So sánh \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2015\cdot2016}\)với \(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\).

Giải : 

Ta có : \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2015\cdot2016}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\cdot2\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}< \frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

Chúc bạn học tốt!

Kẹo dẻo
1 tháng 5 2016 lúc 16:01

Cô mình nói có thể để kết quả đến cuối cùng mà không cần tính vì số to

VD:số có mũ 1000,100,...

cho mình cái đúng với

trần thị bảo trân
Xem chi tiết
Châu Phạm
Xem chi tiết
Trần Hoa Tham
Xem chi tiết
lương quỳnh bảo ngọc
Xem chi tiết
_Detective_
5 tháng 5 2016 lúc 9:26

Xét số chia: 1-\(\frac{1}{2}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) +...+\(\frac{1}{2015}\) - \(\frac{1}{2016}\)

= (1+\(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) +...+\(\frac{1}{2015}\) + \(\frac{1}{2016}\)) - 2.(\(\frac{1}{2}\) + \(\frac{1}{4}\) + ... + \(\frac{1}{2016}\))

= (1+\(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) +...+\(\frac{1}{2015}\) + \(\frac{1}{2016}\)) - (1+\(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) +...+\(\frac{1}{1007}\) + \(\frac{1}{1008}\))

=\(\frac{1}{1009}\) + \(\frac{1}{1010}\) + ... + \(\frac{1}{2015}\)\(\frac{1}{2016}\) => A=1

Nguyễn Ngọc Kim Ngân
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết