cho a^2+b^2=1 chứng minh rằng a^2016+b^2016<1
cho 4 số a,b,c,d > o thỏa mãn a^4/b+c^4/d=1/b+d và a^2+c^2=1. chứng minh rằng a^2016/b^1006+c^2016/d^1008=2/(b+d)^1008
Cho \(a,b,x,y\) là các số thực thỏa mãn: \(x^2+y^2=1\) và \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\) Chứng minh rằng: \(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\dfrac{2}{\left(a+b\right)^{1008}}\)
Cho các số a,b,x,y thoả mãn điều kiện: x+y=a+b và x2+y2=a2+b2
Chứng minh rằng x2016+y2016 = a2016+b2016
cho các số ko âm a b c thỏa mãn điều kiện sau a^2016+b^2016 ,1 vàx^2016=y^2016<1 chứng minh rằng a^1976 x^40+b^1976 y^40
Cho a,b,x,y là các số thực thỏa mãn \(x^2+y^2=1và\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\). Chứng minh rằng: \(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}=\frac{2}{\left(a+b\right)^{2008}}\)
cho các số ko âm a b c thỏa mãn điều kiện sau a^2016+b^2016 =<1 vàx^2016+y^2016=<1 chứng minh rằng a^1976 x^40+b^1976 y^40
Chứng minh rằng nếu\(B:\frac{a^{2016}+3b^{2016}}{c^{2016}+3d^{2016}}=\left(\frac{a^2+2b^2}{c^2+2d^2}\right)^2\)
Cho biểu thức A=(2015^2016 - 1).(2015^2016 +1 )
1.Chứng minh rằng A chia hết cho 4
2.Chứng minh rằng A chia hết cho 12
cho a+2015/a-2015 = b+2016/b-2016 ( a khác 5 ; b khác 6) .chứng minh rằng a/b=2015/2016
\(\frac{a+2015}{a-2015}=\frac{b+2016}{b-2016}\Rightarrow\)\(\frac{a+2015}{a-2015}-1=\frac{b+2016}{b-2016}-1\)
\(\frac{a+2015-a+2015}{a-2015}=\frac{b+2016-b+2016}{b-2016}\Rightarrow\)\(\frac{2015}{a-2015}=\frac{2016}{b-2016}\Rightarrow\)
2015(b-2016) =2016(a-2015) =>2015b =2016a =>\(\frac{a}{b}=\frac{2015}{2016}\)