tìm số tự nhiên m,n sao cho
2^m+n=2^m+2^n
Tìm m,n là số tự nhiên sao cho : 2^m+2^n=2^(m+n)
Giả sử m ≥ n ⇒ 2m ≥ 2n
Chia cả 2n ≠ 0 ⇒ 2m-n + 1 = 2m
+ Nếu m=0 ⇒ 2-n=0 (loại)
+ Nếu m≥1 ⇒ 2m chẵn
⇒ 2m-n lẻ ⇒ m-n=0 ⇔ m=n
⇒ 2m=20+1 ⇒ 2m=2 ⇔ m=1 ⇒ n=1 (tm)
Vậy, m=n=1
cho m,n là số tự nhiên không chia hết cho 4 và có số dư là số lẻ khác nhau . chứng tỏ m+n cha hết cho2
Vì m và n là 2 số tự nhiên ko chia hết cho 4 và có số dư là hai số lẻ khác nhau => Chúng có dạng:
m = 4a + 1 ; n = 4b + 3
Ta có : m + n = (4a + 1) + (4b + 3) = 4a + 4b + 4 = 4(a + b + 1)
Vì 4 chia hết cho 2 => 4(a + b + 1) chia hết cho 2 => m + n chia hết cho 2 (đpcm)
tìm số tự nhiên m và n sao cho 2^m - 2^n = 256
Tìm hai số tự nhiên m,n sao cho (m-2).(n+n-3)=5
\(\left(m-2\right)\left(n+n-3\right)=5\)
\(\Rightarrow\left(m-2\right)\left(2n-3\right)=5\)
\(\Rightarrow m-2\inƯ\left(5\right);2n-3\inƯ\left(5\right)\)
...............
Ta có: (m-2).(2n-3) =5 hay 2mn-3m-4n+6==>m=3; n=4
tìm tất cả các số tự nhiên m,n sao cho: 2^m + 2015 = \n-2006\ + n-2016
tìm tất cả các số tự nhiên m,n sao cho: 2^m + 2015 = |n-2006|+ n-2016
tìm tất cả các số tự nhiên n sao cho với mọi số tự nhiên n thỏa mãn 1<n<m/2 thì (m-n)/n không phải phân số tối giản
Tìm số tự nhiên m và n sao cho 6^m+2^n+2 là số chính phương
Đặt A = m2 + n2 + 2.m.n +m + 3n + 2 ta có :
A > m2 +n2 + 2.m.n =( m+n )2 ;
và A<m2 +n2 + 4 +2.m.n + 4.m+ 4n = ( m+n+ 2 )2
Vậy A nằm giữa hai số chính phương liên tiếp nên :
A chính phương <=> A = ( m + n + 1 )2
<=> A = m2 + n2 + 2.m.n + 2.m + 2.n + 1 <=> m = n + 1
Vậy n \(\in\)N tùy ý và m = n+ 1
1,tìm chữ số tự nhiên x và y sao cho ; 783xy chia hết cho126
2, tìm m,n thuộc sao cho 2 mũ m +2 mũ n= 2 mũ m+n