Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Châu Anh
Xem chi tiết
Gia Huy
19 tháng 6 2023 lúc 22:12

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

Cỏ dại
Xem chi tiết
cao hà trang
1 tháng 3 2020 lúc 14:28

áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)

y+z-x/x=z+x-y/y=x+y-z/z

=y+z-x+z+x-y+x+y-z/x+y+z

=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z

=0+0+0+x+y+z/x+y+z=1

\(\Leftrightarrow\)x=y=z (*)

thay (*) vào B ta có:

B=(1+x/x)(1+x/x)(1+x/x)

  =2.2.2=8

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
21 tháng 8 2020 lúc 8:24

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )

\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)

Thế x = y = z vào B ta được :

\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)

Khách vãng lai đã xóa
Hương Nguyễn
Xem chi tiết
Ekachido Rika
Xem chi tiết
Nhật Hạ
25 tháng 2 2020 lúc 16:45

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)\(\Rightarrow\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Do đó:  +) \(\frac{y+z}{x}=2\)\(\Rightarrow y+z=2x\)

+) \(\frac{z+x}{y}=2\)\(\Rightarrow z+x=2y\)

+) \(\frac{x+y}{z}=2\)\(\Rightarrow x+y=2z\)

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{y+x}{y}.\frac{z+y}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=2.2.2=8\)

Khách vãng lai đã xóa
lutufine 159732486
Xem chi tiết
T.Ps
2 tháng 5 2019 lúc 16:59

#)Giải :

\(A=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}.\frac{x+y}{z}.\frac{z-y}{x}\)

\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\)

Thay vào A, ta được :

\(A=\frac{-y}{x}.\frac{z}{y}.\frac{x}{z}=\frac{-yzx}{xyz}=-1\)

       ~Will~be~Pens~

Võ Hoàng Thảo Phương
Xem chi tiết
Mai Phương Nguyễn
Xem chi tiết
qlamm
30 tháng 12 2021 lúc 1:50

Tham khảo

undefined

Nguyễn Hà Trang
Xem chi tiết
ngonhuminh
27 tháng 12 2016 lúc 21:39

Câu trả lời là thiếu dự kiện

Lê Anh
Xem chi tiết