Cho 3 số x,y,z khác 0 và x+y+z=0
Tính giá trị biểu thức biết (\(\frac{x}{y}\)+1)(\(\frac{y}{z}\)+1)(\(\frac{z}{x}\)+1)
Cho ba số x , y , z khác 0 thỏa mãn $\frac{y+z-x}{x}$ = $\frac{z+x-y}{y}$ = $\frac{x+y-z}{z}$
Tính giá trị biểu thức P = ( 1+$\frac{x}{y}$ )( 1+$\frac{y}{z}$ )( 1+$\frac{z}{x}$ )
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Cho 3 chữ số x; y; z khác 0 và x + y z khác 0 thỏa mãn điều kiện :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính giá trị biểu thức :
\(B=\left(1+\frac{x}{y}\right).\left(1+\frac{y}{2}\right).\left(1+\frac{z}{x}\right)\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)
y+z-x/x=z+x-y/y=x+y-z/z
=y+z-x+z+x-y+x+y-z/x+y+z
=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z
=0+0+0+x+y+z/x+y+z=1
\(\Leftrightarrow\)x=y=z (*)
thay (*) vào B ta có:
B=(1+x/x)(1+x/x)(1+x/x)
=2.2.2=8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )
\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)
Thế x = y = z vào B ta được :
\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
cho các số x,y,z khác 0 thỏa mãn x+y+z=2020 và \(\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}\) tính giá trị biểu thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho 3 số x, y, z là 3 số khác 0 t/m đ/k \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\). Tính giá trị biểu thức \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)\(\Rightarrow\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Do đó: +) \(\frac{y+z}{x}=2\)\(\Rightarrow y+z=2x\)
+) \(\frac{z+x}{y}=2\)\(\Rightarrow z+x=2y\)
+) \(\frac{x+y}{z}=2\)\(\Rightarrow x+y=2z\)
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{y+x}{y}.\frac{z+y}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=2.2.2=8\)
Tính giá trị biểu thức
A=\(\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)
Biết x,y,z khác 0 và x-y-z=0
#)Giải :
\(A=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}.\frac{x+y}{z}.\frac{z-y}{x}\)
\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\)
Thay vào A, ta được :
\(A=\frac{-y}{x}.\frac{z}{y}.\frac{x}{z}=\frac{-yzx}{xyz}=-1\)
~Will~be~Pens~
Cho 3 số thực x, y, z khác 0 thỏa mãn x +y +z =1. Và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Tính giá trị của biểu thức M=\(x^{2018}+y^{2018}+z^{2018}\)
cho x,y,z khác 0 và x-y-z = 0
Tính giá trị biểu thức B= \(\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)
Cho 3 số x; y; z khác 0 thỏa mãn: \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)
Tính giá trị của biểu thức P = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
cho x,y,z là các số khác 0 thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)và \(x^3+y^3+z^3=2^9\).Tính giá trị biểu thức \(P=x^{2009}+y^{2009}+z^{2009}\)