p
Tìm tất cả các cặp số nguyên (p,q) thỏa mãn đẳng thức p(p-1)=q(q2-1)
Tìm tất cả các cặp số nguyên x,y thỏa mãn đẳng thức : \(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: y(x-1)=x^2+2
Từ phương trình \(y\left(x-1\right)=x^2+2\Rightarrow x^2+2\vdots x-1\to x^2-1+3\vdots x-1\to3\vdots x-1\to x-1=\pm1,\pm3.\)
Do vậy mà \(x=2,0,4,-2\). Tương ứng ta có \(y=6,-2,6,-2\)
Vậy các nghiệm nguyên của phương trình \(\left(x,y\right)=\left(2,6\right),\left(0,-2\right),\left(4,6\right),\left(-2,-2\right).\)
giả sử p và q là hai số nguyên tố thỏa mãn đẳng thức p(p-1)=q(q2-1) (*)
a) cmr tồn tại số nguyên k để p-1=kq; q2-1=kp
b) tìm tất cả các số nguyên tố p, q thỏa mãn pt (*)
ai làm đc thì trình bày nha :D
Tìm tất cả cặp số nguyên dương (a,b) thỏa mãn đẳng thức:
\(a^3\)-\(b^3\)+3(\(a^2\)-\(b^2\))+3(a-b)=(a+1)(b+1)+25
TL:
Đặt a-b=x ; a+b+ab+1=y thì ta có pt ban đầu trở thành :
x(x2+3y)=y+25
.............(rồi bạn làm tiếp)
\(a^3-b^3+3\left(a^2-b^2\right)+3\left(a-b\right)=\left(a+1\right)\left(b+1\right)+25\)
\(\Leftrightarrow\left(a^3+3a^2+3a+1\right)-\left(b^3+3b^2+3b+1\right)=\left(a+1\right)\left(b+1\right)+25\)
\(\Leftrightarrow\left(a+1\right)^3-\left(b+1\right)^3=\left(a+1\right)\left(b+1\right)+25\) (*)
Đặt x=a+1,y=b+1 (x,y thuộc Z; x,y >= 2)
Khi đó (*) trở thành \(x^3-y^3=xy+25\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)=xy+25\) (**)
Từ (**) => \(x>y\Rightarrow x-y\ge1\) mà \(x^2+xy+y^2>0\) nên:
\(x^2+xy+y^2\le xy+25\Rightarrow x^2+y^2\le25\Rightarrow x\le4\) (1)
Mặt khác x>y và x,y >= 2 nên xy >= 6
=> \(x^3-y^3=xy+25\ge31\Rightarrow x^3>31\Rightarrow x>3\) (2)
Từ (1) và (2) => x=4
Do x>y và y >= 2 nên \(y\in\left\{2;3\right\}\)
Thử lại, chỉ có x=4,y=3 thỏa (**) => a=3,b=2
Vậy a=3,b=2
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn hệ thức \(y=\frac{1}{x+1}+\frac{8}{x-4}\)
tìm tất cả các cặp số nguyên dương (x;y)
thỏa mãn biểu thức 3/x+2/y=1
Bài 1:Tìm tất cả các cặp số tự nhiên (x,y) thỏa mãn: \(2^x\cdot x^2=9y^2+6y+16.\)
Bài 2: Tìm tất cả các cặp số nguyên (x,y) thỏa mãn: \(\left(x+1999\right)\left(x+1975\right)=3^y-81.\)
Bài 3: Chứng minh rằng với mọi số nguyên tố p thì \(5^p-2^p\)không thể là lũy thừa lớn hơn 1 của 1 số nguyên dương.
Bài 4: Tìm tất cả các cặp số nguyên dương (m,n) thỏa mãn \(6^m+2^n+2\)là số chính phương.
Bài 5: Tìm tất cả các số nguyên dương x,y,z thỏa mãn \(x^2+2^{y+2}=5^z.\)
MỌI NGƯỜI GIÚP MÌNH ĐƯỢC BÀI NÀO THÌ GIÚP NHÉ. CẢM ƠN NHIỀU.
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Bài 4:
Ta đặt: \(S=6^m+2^n+2\)
TH1: n chẵn thì:
\(S=6^m+2^n+2=6^m+2\left(2^{n-1}+1\right)\)
Mà \(2^{n-1}+1⋮3\Rightarrow2\left(2^{n-1}+1\right)⋮6\Rightarrow S⋮6\)
Đồng thời S là scp
Cho nên: \(S=6^m+2\left(2^{n-1}\right)=\left(6k\right)^2\)
\(\Leftrightarrow6^m+6\left(2^{n-2}-2^{n-3}+...+2-1\right)=36k^2\)
Đặt: \(A\left(n\right)=2^{n-2}-2^{n-3}+...+2-1=2^{n-3}+...+1\)là số lẻ
Tiếp tục tương đương: \(6^{m-1}+A\left(n\right)=6k^2\)
Vì A(n) lẻ và 6k^2 là chẵn nên: \(6^{m-1}\)lẻ\(\Rightarrow m=1\)
Thế vào ban đầu: \(S=8+2^n=36k^2\)
Vì n=2x(do n chẵn) nên tiếp tục tương đương: \(8+\left(2^x\right)^2=36k^2\)
\(\Leftrightarrow8=\left(6k-2^x\right)\left(6k+2^x\right)\)
\(\Leftrightarrow2=\left(3k-2^{x-1}\right)\left(3k+2^{x-1}\right)\)
Vì \(3k+2^{x-1}>3k-2^{x-1}>0\)(lớn hơn 0 vì 2>0 và \(3k+2^{x-1}>0\))
Nên: \(\hept{\begin{cases}3k+2^{x-1}=2\\3k-2^{x-1}=1\end{cases}}\Leftrightarrow6k=3\Rightarrow k\notin Z\)(loại)
TH2: n là số lẻ
\(S=6^m+2^n+2=\left(2k\right)^2\)(do S chia hết cho 2 và S là scp)
\(\Leftrightarrow3\cdot6^{m-1}+2^{n-1}+1=2k^2\)là số chẵn
\(\Rightarrow3\cdot6^{m-1}+2^{n-1}\)là số lẻ
Chia tiếp thành 2TH nhỏ:
TH2/1: \(3\cdot6^{m-1}\)lẻ và \(2^{n-1}\)chẵn với n là số lẻ
Ta thu đc: m=1 và thế vào ban đầu
\(S=2^n+8=\left(2k\right)^2\)(n lớn hơn hoặc bằng 3)
\(\Leftrightarrow2^{n-2}+2=k^2\)
Vì \(k^2⋮2\Rightarrow k⋮2\Rightarrow k^2=\left(2t\right)^2\)
Tiếp tục tương đương: \(2^{n-2}+2=4t^2\)
\(\Leftrightarrow2^{n-3}+1=2t^2\)
\(\Leftrightarrow2^{n-3}\)là số lẻ nên n=3
Vậy ta nhận đc: \(\left(m;n\right)=\left(1;3\right)\)
TH2/2: \(3\cdot6^{m-1}\)là số chẵn và \(2^{n-1}\)là số lẻ
Suy ra: n=1
Thế vào trên: \(6^m+4=4k^2\)
\(\Leftrightarrow6^m=\left(2k-2\right)\left(2k+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}2k-2=6^q\\2k+2=6^p\end{cases}}\Rightarrow p+q=m\)
Và \(6^p-6^q=4\)
\(\Leftrightarrow6^q\left(6^{p-q}-1\right)=4\Leftrightarrow6^q\le4\Rightarrow q=1\)(do là tích 2 stn)
\(\Rightarrow k\notin Z\)
Vậy \(\left(m;n\right)=\left(1;3\right)\)
P/S: mk không kiểm lại nên có thể sai
Tìm tất cả các cặp số nguyên thỏa mãn y(x-1)=\(^{x^2}\)+2
Ta có:\(y\left(x-1\right)=x^2+2\)
\(\Rightarrow y\left(x-1\right)-x^2=2\)
\(\Rightarrow y\left(x-1\right)-x^2+1=3\)
\(\Rightarrow y\left(x-1\right)-\left(x^2-1\right)=3\)
\(\Rightarrow y\left(x-1\right)-\left(x+1\right)\left(x-1\right)=3\)
\(\Rightarrow\left(y-x-1\right)\left(x-1\right)=3\)
Vì x,y nguyên nên ta có bảng
x-1 | 3 | 1 | -1 | -3 |
y-x-1 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 6 | 8 | 2 | 4 |
Vậy \(\left(x,y\right)\in\left\{\left(4,6\right);\left(2,8\right);\left(0,2\right);\left(-2,4\right)\right\}\) thỏa mãn
Tìm tất cả các cặp số nguyên (a;b) thỏa mãn đẳng thức 9a2 -6a -b3 =0
tìm tất cả cặp số nguyên (x;y) thỏa mãn đẳng thức:
(x+1)4_ (x+1)4= y3
ai trả lời hộ minh bài này vs mình đang cần gấp