Tim x , y , z biet: x /y+z+1 = y/ z+x+2 = z/ x+y−3 =x+y+z Cach lam ho minh voi
Tim x , y , z biet:
\(\frac{x}{y+z+1}=\frac{y}{z+x+2}=\frac{z}{x+y-3}=x+y+z\)
Cach lam ho minh voi
Tim x , y , z biet: |x-y|+|y-z|+|z-x|=2015
Cach lam nua nha
cach lam bai : giup minh voi
tim x thuoc Z biet:
a, /x/+/y/=0
b, /x/ + /y/= 1
a. x=y=0
b.x=0;y=-1 hoac 1
y=0;x=-1 hoac 1
Tim x, y, z biet
a ) |x-3,5|+ |x+5|=0
b) |x-1| + (y+1)^2 + |z-1|=0
c) ( x-1/3)^2 + (y-2)^2+ (z-1)^2 be hon hoac bang 0
d)(x-z)^2+ (y+x)^2 + (z+1/4)^2 =0
Cac ban giup minh voi minh can gap lam
a. vô nghiệm vì tổng hai số dương chỉ bằng ko khi chúng đồng thời bằng 0
b. tổng 3 số dưng =0 khi dồng thời cả 3 bằng 0
vậy x=1; y=-1; z=1
c.tổng 3 số dưng luông lớn hơn bằng ko
vậy x=1/3; y=2; z=1
d tương tự
x-z=0
x+y=0
z+1/4=0
.............
z=-1/4
x=-1/4
y=1/4
Tim cac so nguyen x , y , z biet:
|x.y-10|+|y.z+15|+|zx+6|≤0
Trinh bay cach lam ho minh voi nhe
C1: tìm x và y biet 5/x + y/4 =1/8
C2: thay các chữ số thích hợp:
1 : 0,0abc = a+b+c+d
C3: tìm x,y,z biết
x/(y+z+1) = y/(x+z+1) = z/(x+y+2) = x+y+z
Giai cach lam nha
C1:\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{20}{4x}+\frac{xy}{4x}=\frac{1}{8}\)
\(\Rightarrow\frac{20+xy}{4x}=\frac{1}{8}\)
\(\Rightarrow\left(20+xy\right).8=4x\Rightarrow160+8xy=4x\)
\(\Rightarrow4x-8xy=160\Rightarrow4x.\left(1-2y\right)=160\)
\(\Rightarrow x.\left(1-2y\right)=40\)
\(\Rightarrow x.\left(1-2y\right)=1.40=\left(-1\right).\left(-40\right)=2.20=\left(-2\right).\left(-20\right)=4.10=\left(-4\right).10=5.8=\left(-5\right).\left(-8\right)\)
\(=8.5=\left(-8\right).\left(-5\right)=10.4=\left(-10\right).\left(-4\right)=20.2=\left(-20\right).\left(-2\right)=40.1=\left(-40\right).1\)
Với mỗi th bạn thế vào tìm x,y tiếp nha
tim x,y,z biet y+z+1=x+z+2/y=x+y-3/2=1/x+y+z
4x(x+y)(x+y+z)(x+z)+y^2z^2 chung minh luon luon >= 0 voi moi x,y,z
moi nguoi ghi ro chi tiet tung cach lam nhja ^^ khong skip buoc nao
tks mn a
Ta có: \(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left[x\left(x+y+z\right)\right]\left[\left(x+y\right)\left(x+z\right)\right]+y^2z^2\)
\(=4\left(x^2+xy+zx\right)\left(x^2+xy+yz+zx\right)+y^2z^2\) \(\left(1\right)\)
Đặt \(\hept{\begin{cases}x^2+xy+zx=a\\yz=b\end{cases}}\)
Khi đó: \(\left(1\right)=4a\left(a+b\right)+b^2\)
\(=4a^2+4ab+b^2\)
\(=\left(2a+b\right)^2\)
\(=\left(2x^2+2xy+2zx+yz\right)^2\ge0\left(\forall x,y,z\right)\)
=> đpcm
Ta có:\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+yz+zx\right)+y^2z^2\)Đặt \(x^2+xy+xz=t\)thì biểu thức trên trở thành \(4t\left(t+yz\right)+y^2z^2=4t^2+4yzt+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\forall x,y,z\left(đpcm\right)\)
1. tim cac cap so nguyen duong (x, y) sao cho:
2 x3 + xy = 11
2. tim cac cap so nguyen duong (x, y, z)sao cho:
x + y + z = x*y*z
3. tim x thuoc z, biet;
|x| = -2003
|x| = |-2003|
minh dang can gap lam. chieu mai phai nop rui