Giúp với:
Cho a^2+b^2+c^2 = a^3+b^3+c^3 = 1 Tính giá trị biểu thức: C = a^2+b^9+c^1945
Giúp với:
Cho a^2+b^2+c^2 = a^3+b^3+c^3 = 1 Tính giá trị biểu thức: C = a^2+b^9+c^1945
Mình thật sự đang cần lời giải gấp lắm. Please giúp với:
Cho a^2+b^2+c^2 = a^3+b^3+c^3 = 1 Tính giá trị biểu thức: C = a^2+b^9+c^1945
Bài 4: Cho a^2+b^2+c^2 = a^3+b^3+c^3 =1
Tính giá trị của biểu thức: C= a^2+b^9+c^1945
Cho \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính giá trị biểu thức: \(C=a^2+b^9+c^{1945}\)
Mình đang cần lời giải (chi tiết) và đang gấp. Xin giúp mình. Cảm ơn nhiều
Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)
Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)
\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)
Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)
Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)
Vậy C = 1
Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1
Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)
\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)
Ta có:
\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\)
\(\Rightarrow a,b,c\le1\)
Ta lại có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^3-a^2+b^3-b^2+c^3-c^2=0\)
\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Mà \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\)với mọi a,b,c (vì \(a^2,b^2,c^2\le0\)và\(a,b,c\le1\))
Suy ra ta phải có: \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)
Kết hợp gt suy ra 3 số a,b,c phải là một số bằng 1 và 2 số còn lại bằng 0.
Vì a,b,c vai trò như nhau nên giả sử \(a=1\Rightarrow b=c=0\)
Khi đó \(C=a^2+b^9+c^{1945}=1+0+0=1\)
Cho a2+b2+c2=a3+b3+c3=1. Tính giá trị biểu thức: C= a2+b9+c1945
Cho a2 + b2 + c2 = a3+ b3+ c3 = 1
Tính giá trị của biểu thức: C = a2 +b9+ c1945
Cho các số a,b,c thỏa mãn điều kiện: a2+b2+c2=1 và a3+b3+c3=1.
Tính giá trị của biểu thức: S=a2+b9+c1945
Từ giả thiết đề bài ta có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0.\)
Có: \(a^2+b^2+c^2=1\Rightarrow\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
Từ đó ta có: \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0.\)
Dấu bằng xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0.\)
Kết hợp với điều kiện : \(a^2+b^2+c^2=1\)và \(a^3+b^3+c^3=1\)ta tìm được bộ ba số: a = 1; b = 0; c = 0 hoặc a= 0; b = 1; c = 0 hoặc a = 0; b = 0; c = 1.
Từ đó tìm ra S = 1 .
THEO MÌNH a = 1 b = 0 c = 0 hoặc là a = 0 b = 1 c = 0
\(\Rightarrow\)S = 1 mình đã rất mỏi tay nên ko diễn giải dc
FC : ĐÃ RẤT CỐ GẮNG
làm theo cách xét: x^3>x^2 khi...
x^3<x^2 khi ...
x^3=x^2 khi...
chắc là sẽ đc
Cho các số a,b,c thỏa mãn điều kiện: a2+b2+c2=1 và a3+b3+c3=1.
Tính giá trị của biểu thức: S=a2+b9+c1945
a\(^2\)+ b\(^2\) + c\(^2\) = 1⇒ \(\left|a\right|\); \(\left|b\right|\) ; \(\left|c\right|\) ≤ 1
⇒ \(\left|a^3\right|\) ≤ a\(^2\) ; \(\left|b^3\right|\) ≤ b\(^2\) ; \(\left|c^3\right|\) ≤ c\(^2\)
⇒a\(^3\)+ b\(^3\)+ c\(^3\) ≤ \(\left|a^3\right|\) + \(\left|b^3\right|\) + \(\left|c^3\right|\) ≤ a\(^2\) + b\(^2\) + c\(^2\) = 1
Dấu "=" xảy ra khi( a;b;c) = (1;0;0) ; (0;1;0) ; (0;0;1)
Vậy S = 0 + 0 + 1 = 1
Cho: a^2+b^2+c^2=a^3+b^3+c^3=1
Tính giá trị biểu thức: C=a^2+b^9+c^1945
Ta có:
\(a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Mà
\(a^2+b^2+c^2=1\Rightarrow\left|a\right|\le1;\left|b\right|\le1;\left|c\right|\le1\Rightarrow1-a\ge0;1-b\ge0;1-c\ge0\)
\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Dấu "=" xảy ra khi và chỉ khi:\(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0\)
Khi đó ta tìm được \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị.
Thay vào ta tìm được \(C=1\)
P/S:Mik nghĩ đề là \(a^2+b^9+c^{1945}\) thì sẽ hợp lý hơn:3