Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phuong ngoc
Xem chi tiết
Mai Đức Minh
2 tháng 12 2021 lúc 9:29

mình học lớp 4 bạn đố như này bố thằng nào trả lời được

Khách vãng lai đã xóa
Nguyen Hai Minh
Xem chi tiết
natsu daneel
Xem chi tiết
Vũ Anh Tài
Xem chi tiết
Nguyen Hong Ngoc
Xem chi tiết
Lê Song Phương
30 tháng 7 2023 lúc 20:10

\(P=a^7b^3-a^3b^7\)

\(P=a^3b^3\left(a^4-b^4\right)\)

\(P=a^3b^3\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)

Ta sẽ chứng minh \(P\) chia hết cho 5 và cho 6.

a) CM \(5|P\).  Kí hiệu \(\left(a;b\right)\) là cặp số dư lần lượt của a và b khi chia cho 5.

Nếu a hoặc b chia hết cho 5 thì xong. Còn nếu \(a\equiv b\left(mod5\right)\) cũng coi như hoàn tất. \(a+b\equiv0\left(mod5\right)\) cũng như thế.

 Do đó ta loại đi được các trường hợp \(\left(0;0\right),\left(1;1\right),\left(2;2\right),\left(3;3\right),\left(4;4\right)\) và \(\left(1;4\right),\left(2;3\right),\left(3;2\right),\left(4;1\right)\) và \(\left(0;1\right),\left(0;2\right),\left(0;3\right),\left(0;4\right),\left(1;0\right),\left(2;0\right),\left(3;0\right),\left(4;0\right)\)

 Ta chỉ còn lại 8 trường hợp là \(\left(1;2\right),\left(1;3\right),\left(2;4\right),\left(3;4\right)\) và các hoán vị. Nếu \(\left(a;b\right)\equiv\left(1;2\right)\left(mod5\right)\) thì \(a^2+b^2=\left(5k+1\right)^2+\left(5l+2\right)^2=25k^2+10k+1+25l^2+20l+4=5P+5⋮5\)

Các trường hợp còn lại xét tương tự \(\Rightarrow5|P\).

b) CM \(6|P\). Ta thấy \(a^3b^3\left(a-b\right)\left(a+b\right)\) luôn là số chẵn (nếu \(a\equiv b\left(mod2\right)\) thì \(2|a-b\), còn nếu \(a\ne b\left(mod2\right)\) thì \(2|a^3b^3\).

 Đồng thời, cũng dễ thấy \(3|P\) vì nếu \(a\) hay \(b\) chia hết cho 3 thì coi như xong. Nếu \(a\equiv b\left(mod3\right)\) cũng xong. Còn nếu \(a+b\equiv0\left(mod3\right)\) thì cũng hoàn tất.

 Suy ra \(6|P\)

 Từ đó suy ra \(30|P\)

Phương Hồng Hạnh
30 tháng 7 2023 lúc 23:06

�=�3�3(�4−�4)

�=�3�3(�−�)(�+�)(�2+�2)

Ta sẽ chứng minh  chia hết cho 5 và cho 6.

a) CM 5∣�.  Kí hiệu (�;�) là cặp số dư lần lượt của a và b khi chia cho 5.

Nếu a hoặc b chia hết cho 5 thì xong. Còn nếu �≡�(���5) cũng coi như hoàn tất. �+�≡0(���5) cũng như thế.

 Do đó ta loại đi được các trường hợp (0;0),(1;1),(2;2),(3;3),(4;4) và (1;4),(2;3),(3;2),(4;1) và (0;1),(0;2),(0;3),(0;4),(1;0),(2;0),(3;0),(4;0)

 Ta chỉ còn lại 8 trường hợp là (1;2),(1;3),(2;4),(3;4) và các hoán vị. Nếu (�;�)≡(1;2)(���5) thì �2+�2=(5�+1)2+(5�+2)2=25�2+10�+1+25�2+20�+4=5�+5⋮5

Các trường hợp còn lại xét tương tự ⇒5∣�.

b) CM 6∣�. Ta thấy �3�3(�−�)(�+�) luôn là số chẵn (nếu �≡�(���2) thì 2∣�−�, còn nếu �≠�(���2) thì 2∣�3�3.

 Đồng thời, cũng dễ thấy 3∣� vì nếu  hay  chia hết cho 3 thì coi như xong. Nếu �≡�(���3) cũng xong. Còn nếu �+�≡0(���3) thì cũng hoàn tất.

 Suy ra 6∣�

 Từ đó suy ra 30∣�

linhhoang03
Xem chi tiết
Nguyễn Anh
19 tháng 2 2016 lúc 20:28

1.Gộp 3 số vào thành 1 tổng rồi tính:

(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)

=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)

=1*15+2^3*15+...+2^37*15

=15*(1+2^3+...+2^39) chia hết cho 15

jjkk
Xem chi tiết
Mới vô
10 tháng 5 2017 lúc 19:15

1.

Gọi số cần tìm là \(n\)(\(n\in Z\)|\(n\le0\))

Theo đề bài ta có:

\(5n-6⋮n+3\)

\(5n+15-21⋮n+3\)

\(5\left(n+3\right)-21⋮n+3\)

\(\Rightarrow-21⋮n+3\)

\(\Rightarrow n+3\inƯ\left(-21\right)\)

\(Ư\left(-21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

Ta có bảng sau:

n+3-21-7-3-113721
n-24-10-6-4-20418

Ta thấy n chỉ có 0;4;18 thỏa mãn điều kiện

Vậy các số cần tìm là 0;4;18

Kien Pham Tran Trung
15 tháng 5 2017 lúc 12:56

đây mà là độ́́́́́́ vui hả

Nguyễn Bích Hạnh
Xem chi tiết
Summer
6 tháng 8 2017 lúc 20:16

Ta có M=7.(1+7)+72.(1+7)+...........+71999(1+7)

M=7.8+72.8+.............+71999.8

M=8.(7+72+...........+71999) chia hết cho 8

Summer
6 tháng 8 2017 lúc 20:19

ta có M=7.(1+7+72+............+71999) nên M chia hết cho 7

mà M cũng chia hết cho 8 nên M chia hết cho 56vi 7 và 8 nguyên tố cùng nhau

Trần Băng Di
Xem chi tiết
Lily
Xem chi tiết
Khong Biet
18 tháng 12 2017 lúc 14:54

Ta có:\(10a+b-3\left(a+5b\right)\)

\(=10a+b-3a-15b\)

\(=7a-14b\) chia hết cho 7

Mà \(3\left(a+5b\right)\) chia hết cho 7 nên \(10a+b\) chia hết cho 7

Nguyễn Ngọc Anh Minh
18 tháng 12 2017 lúc 15:12

a+5b chia hết cho 7 => 10(a+5b)=10a+50b=10a+b+49b chia hết cho 7

49 b chia hết cho 7 => 10a+b chia hết cho 7