Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Hữu Nam
Xem chi tiết
phạm thủy
2 tháng 2 2016 lúc 9:02

x+x+x+x+x+x+x+x+x+x=46595+x+x+x+x+12

=> x*10 = 46607+x*4

=> x*10 - x*4 =46607

=> x*6 = 46607 

=> x = 7767.833333..... chia ko hết

vậy x = 7767.83333333....chia ko hết

duyệt nha các bn

 

nguyễn minh huy
Xem chi tiết
Nguyễn Ngọc Quý
4 tháng 12 2017 lúc 20:02

ta có : 2018p \(\equiv\)2p (mod 3) 

Vì là SNT > 5 => p lẻ

=> 2p \(\equiv\)2 (mod 3)

2017q \(\equiv\)1 (mod 3)

=> 2018p - 2017q \(\equiv\)2 - 1 = 1 (mod 3)

Vậy 2018p - 2017q chia 3 dư 1

b) xét số dư khi chia p cho 3 => p có 2 dạng 3k + 1 hoặc 3k + 2

+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)2 (mod 3) ; 7p \(\equiv\)1 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3

+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)1(mod 3) ; 7p \(\equiv\)2 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3

Vậy 3p5 + 5p3 + 7p \(⋮\)3 (1)

Xét số dư khi chia p cho 5 => p có 4 dạng 5k+1;5k+2;5k+3;5k+4

+ p = 5k + 1 => 3p5 \(\equiv\)3 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)7 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5

 + p = 5k + 2 => 3p5 \(\equiv\)1 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)4 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5                                                                                                    

+ p = 5k + 3 => 3p5 \(\equiv\)4 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)1 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5

+ p = 5k + 4 => 3p5 \(\equiv\) 2(mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)3 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5

Vậy 3p5 + 5p3 + 7p \(⋮\)5 (2)

Từ (1) và (2) và (3;5) = 1 =>  3p5 + 5p3 + 7p \(⋮\)15 

=> \(\frac{3p^5+5p^3+7b}{15}\)là số nguyên (đpcm)

Lê Công Thành
Xem chi tiết
nguyễn văn sơn
16 tháng 6 2015 lúc 15:54

BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5 

Ta có P8n+3P4n-4 = p4n(p4n+3) -4 

Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1 

( cách chứng minh là đồng dư hay tìm chữ số tận cùng )

suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5

Bài 5

Ta xét :

Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)

Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)

suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)

Từ (1) và (2) suy ra 4p+1 là hợp số 

Phạm Hồng Quyên
Xem chi tiết
Bùi Minh Tuấn
16 tháng 2 2015 lúc 18:21

câu này mình thử

nếu p bằng 3 (cho dễ tính)

thì ta có :

3^3-2^3=1

1 / 3 dư 1

Nakamori Aoko
Xem chi tiết
Phương
13 tháng 10 2018 lúc 10:28

a)Ta có 

p = 42k + y  = 2. 3 .7 . k + r (k,r thuộc N, 0 < y < 42 )

Vì y là số nguyên tố nên r không chia hết cho 2, 3, 7.

Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.

Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.

thich hoc toan
Xem chi tiết
Trần Thị Kiều Trang
Xem chi tiết
Trần Thị Kiều Trang
11 tháng 3 2015 lúc 20:48

Cảm ơn hai bạn nha

 

nGUYỄN LAM NGỌC
Xem chi tiết
Phạm Phương Mai
3 tháng 3 2016 lúc 21:28

Mk đgcần gấp ao trả lời cho bn nè đi

Kaito Kid
Xem chi tiết
TFBoys Nam Thần
25 tháng 3 2016 lúc 20:29

a, Vi p la snt >3 suy ra p khong chia het cho3 suy ra p2 khong chia het cho 3 suy ra pla so chia 3 du 1              vay p2 la so chia 3 du 1                                                                                                                                  b,vi p la no nguyen to lon hon 3 nen p la so le suy ra p2 la so le suy ra p2+2015 la so chan suy ra p2+2015chia het cho 2, ma p2+2015 lon hon 2 suy ra p2+2015 la hop so