Chứng minh rằng a x c đồng dư với b x d mod m?
Giúp mình với. Cảm ơn nhiều.
CHỨNG MINH RẰNG:
a) Nếu a đồng dư với 1 ( mod 2) thì a2 đồng dư với 1 ( mod 8)
b) Nếu a đồng dư với 1 ( mod 3) thì a2 đồng dư với 1 ( mod 9)
cho ax(đồng dư)ay(mod m)
Chứng minh rằng :
x(đồng dư)y (mod\(\frac{m}{UCNN\left(a,m\right)}\))
chứng minh rằng nếu abc đồng dư với 0 (mod 21) thì (a - b) + 4c đồng dư với 0 (mod 21)
\(\overline{abc\equiv0}\) (mod 21)
<=> 100a +10b+c\(\equiv\)0 (mod 21)
<=> 84a+16a+10b+c\(\equiv\)0 (mod 21)
<=> 16a+10b+c\(\equiv\)0 (mod 21) vì 84\(⋮\)21
<=> 64a+40b+4c\(\equiv\)0 (mod 21)
<=> 63a+a+42b-2b+4c\(\equiv\)0 (mod 21)
<=> a-2b+4c\(\equiv\)0 (mod 21) đpcm
chứng minh rằng :
Nếu a đồng dư với 1 (mod 2) thì a2 đồng dư với 1(mod 8)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến
Bài 1: Biết a+b=15 và a.b=2. Tính (a-b)^2
Bài 2: Số tự nhiên x:7 dư 6. Chứng minh rằng x^2:7 dư 1
Các bạn nhanh giúp mình với ạ! Mình cảm ơn trước
Bài 1:
\(a+b=15\)
\(\Rightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a^2+2ab+b^2=225\)
\(\Leftrightarrow a^2+4+b^2=225\)
\(\Leftrightarrow a^2+b^2=221\)
Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=221-4\)
\(217\)
Bài 2:
Vì \(x:7\)dư 6
\(\Rightarrow x\equiv-1\left(mod7\right)\)
\(\Rightarrow x^2\equiv1\left(mod7\right)\)
Vậy \(x^2:7\)dư 1
Cho a,b,c là các số nguyên.Các đa thức f(x) = ax2+bx+c và g(x) = (c-b)x2 + (c – a)x + (a+b). Chứng minh rằng 2 phương trình này có nghiệm chung khi a + b +2c chia hết cho 3
Giúp mình với ạ.Mk cảm ơn nhiều
Cho tam giác ABC có AB=AC , M lad trung điểm của BC .
a) chứng minh rằng : tam giác AMB = tam giác AMC
b) trên tia đối của tia MA lấy điểm D sao cho MD=MA . Chứng minh rằng AB song song với CD
m.n giúp mình với nha . cảm ơn các bạn nhiều !!!
Chứng minh rằng x không chia hết cho 3 thì x2 đồng dư với 1 (mod 3)
Xét : x^2-1 = (x-1).(x+1)
x ko chia hết cho 3 nên x chia 3 dư 1 hoặc 2
Nếu x chia 3 dư 1 => x-1 chia hết cho 3 => x^2-1 chia hết cho 3
Nếu x chia 3 dư 2 => x+1 chia hết cho 3 => x^2-1 chia hết cho 3
Vậy x^2-1 chia hết cho 3 với mọi x ko chia hết cho 3 , x thuộc Z
=> với mọi x ko chia hết cho 3 , x thuộc Z thì x^2 đồng dư vơi 1 (mod 3)
Tk mk nha
a)56.16 + 17.243 (mod 16)
b)67.32 + 34.944 (mod 31) c) 786.123 + 73.49 (mod 12) 2. Chứng minh rằng: 3 2n+1 + 5 chia hết cho 8 với mọi số tự nhiên n 3. Chứng minh rằng: n n−1 + n n−2 + n n−3 + ... + n 3 + n 2 + n chia hết cho n − 1 với mọi số tự nhiên n > 1 Giúp mình với ạ, cảm ơn!