chứng minh rằng a,b,c là ba cạnh tam giác có chu vi bằng 2thì 0<a,b,c bé hơn hoặc bằng 1
Chứng minh rằng a, b, c là 3 cạnh của tam giác có chu vi bằng 1 thì: \(0< a,b,c\le1\)
Theo đề, ta có: a,b,c > 0
a+b+c =1 => a,b,c < 1
=> 0 < a,b,c < 1
(sao lại \< 1 được ak???)
Cho a, b, c là ba cạnh của một tam giác có chu vi bằng 2. Chứng minh rằng:
\(\frac{3}{2}< a^2+b^2+c^2+2abc\)
Cho tam giác ABC có độ dài ba cạnh là a,b,c và có chu vi là 2. Chứng minh rằng \(a^2+b^2+c^2+2abc< 2\)
Ta có:
\(a< b+c\)
\(\Leftrightarrow2a< a+b+c=2\)
\(\Leftrightarrow a< 1\)
Tương tự ta cũng có:
\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)
\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)
\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)
Chứng minh rằng nếu a,b,c là độ dài ba cạnh của một tam giác có chu vi bằng 3 thì :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\) >= 3
Dễ thấy a,b,c là độ dài của tam giác nên
a + b - c > 0 ; b + c - a > 0 ; c+a-b > 0
Theo Cauchy-Schwarz thì
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi a=b=c = 1
Ta có: Vì chu vi của tam giác là 3 nên a + b + c = 3
Xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)
Tương tự CM được:
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\) và \(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)
Cộng vế 3 BĐT trên lại ta được:
\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3^2}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra khi: \(a=b=c\)
cách khác @@
Theo AM-GM ta có :
\(\frac{1}{a+b-c}+\left(a+b-c\right)\ge2\sqrt{\frac{1}{a+b-c}.\frac{a+b-c}{1}}=2\)
Tương tự \(\frac{1}{b+c-a}+\left(b+c-a\right)\ge2\)
\(\frac{1}{c+a-b}+\left(c+a-b\right)\ge2\)
Cộng theo vế : \(LHS+2\left(a+b+c\right)-a-b-c\ge6\)
\(< =>LHS+3\ge6< =>LHS\ge3\)
Dấu = xảy ra \(< =>a=b=c=1\)
Vậy ta có điều phải chứng minh
Cho a,b,c là độ dài 3 cạnh của 1 tam giác có chu vi bằng 2.Chứng minh rằng 1+abc<ab+ac+bc
Ta có:
a<b+ca<b+c
--> a+a<a+b+ca+a<a+b+c
--> 2a<22a<2
--> a<1a<1
Tương tự ta có : b<1,c<1b<1,c<1
Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc
Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm
Cho a, b, c là độ dài ba cạnh của tam giác có chu vi bằng 2.
Chứng minh: (a + b + c)^2 - (a^2 + b^2 + c^2) - 2abc > 2
a^2+b^2+c^2+2ab+2cb+2ac-a^2-b^2-c^2-2abc>2
2ab+2ca+bc-2abc>2
sao lại từ phần cần chứng minh nhân ra vậy.
Mà bạn làm mình ko hiểu
Cho a,b,c là ba cạnh của một tam giác có chu vi bằng 2. Chứng minh rắng: a2+b2+c2+2abc <2
a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²
tương tự: bc+ab > b²; ca+bc > c²
cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)
gthiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}
=> 2 > a²+b²+c² (đpcm)
đúng nha
Cho tam giác ABC có độ dài ba cạnh là a, b, c và chu vi bằng 3
Chứng minh rằng: \(3a^2+3b^2+3c^2+4abc\ge13\)
Giúp mình nha
Dễ thấy \(0< a,b,c< \frac{3}{2}\)
Thật vậy nếu g/s ngược lại tồn tại 1 số >= 3/2 và g/s đó là a
\(\Rightarrow a\ge b+c\) mâu thuẫn với BĐT tam giác nên ta có điều như trên
Ta có: \(\left(\frac{3}{2}-a\right)+\left(\frac{3}{2}-b\right)+\left(\frac{3}{2}-c\right)\ge3\sqrt[3]{\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)}\)
\(\Leftrightarrow\frac{9}{2}-\left(a+b+c\right)\ge3\sqrt[3]{\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)}\)
\(\Leftrightarrow\frac{1}{2}\ge\sqrt[3]{\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)}\)
\(\Leftrightarrow\frac{1}{8}\ge\left(\frac{3}{2}-a\right)\left(\frac{3}{2}-b\right)\left(\frac{3}{2}-c\right)\)
\(\Leftrightarrow\frac{1}{8}\ge\left(\frac{9}{4}-\frac{3}{2}a-\frac{3}{2}b+ab\right)\left(\frac{3}{2}-c\right)\)
\(\Leftrightarrow\frac{1}{8}\ge\frac{27}{8}-\frac{9}{4}\left(a+b+c\right)+\frac{3}{2}\left(ab+bc+ca\right)-abc\)
\(\Leftrightarrow\frac{1}{8}\ge\frac{27}{8}-\frac{27}{4}+\frac{3}{2}\left(ab+bc+ca\right)-abc\)
\(\Leftrightarrow\frac{3}{2}\left(ab+bc+ca\right)-abc\le\frac{7}{2}\)
\(\Leftrightarrow6\left(ab+bc+ca\right)-4abc\le14\)
\(\Leftrightarrow4abc\ge6\left(ab+bc+ca\right)-14\)
\(\Leftrightarrow3a^2+3b^2+3c^2+4abc\ge3\left(a+b+c\right)^2-14\)
\(\Leftrightarrow3a^2+3b^2+3c^2+4abc\ge13\)
Dấu "=" xảy ra khi: a = b = c = 1
Chứng minh rằng
a) 1/a + 1/b >= 4/ a+b với a,b >0
b) 1/ p-a + 1/p-b + 1/ p-c >= 2 * ( 1/a + 1/b + 1/c)
với a,b,c là độ dài ba cạnh của tam giác, p là nửa chu vi của tam giác đó