cho mình hỏi với
Chứng minh rằng 2011^10-1 chia hết cho 10
Giúp mình với
Chứng minh 1+3+32+...+34n-1 chia hết cho 5 và 8
Cho A=10^2012 +10^2011 +10^2010 +10^2009 +8
a) Chứng minh rằng A chia hết cho 24
b) Chứng minh rằng A không phải là 1 số chính phương
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
Cho A= 10^2012 + 10^2011 + 10^2010 + 10^2009 + 8 . Chứng minh rằng A chia hết cho 24
cho A=102011+102012+102013+...+102018 +16.Chứng minh rằng A chia hết cho 48
Chứng minh rằng 10^2011+8 chia hết cho 72
Ta có :
102011 = 100...00 ( 2011 số 0 )
102011 + 8 = 100...08 ( 2010 số 0 )
=> Tổng các số hạng của 100....08 là : 1+8 = 9
=> 102011 + 8 chia hết cho 9
Vì 100...08 có 2 chữ số tận cùng là 08 nên chia hết cho 8 .
=> 101011 + 8 chia hết cho 8
Vì 102011 + 8 chia hết cho 9 và 8
=> 102011 + 8 chia hết cho 72
Ta có: A= 10^2011 + 8 = 100...008
=> A chia hết cho 9 và 4
mà (4;9)=1
=> A chia hết cho 4.9=72
=> ĐPCM
cho A = 10^2012 + 10^2011 + 10^2010 + 10^2009 +8
a, chứng minh rằng A chia hết cho 24
b,chứng minh A ko phải số chính phương
chứng minh rằng 2013^2014+2011^2012 chia hết cho 10
ta có: 3^2014=(3^2)^1007=9^1007=......9
1^2012=.....1
=>2013^2014+2011^2012=....9+....1=........0 chia hết 10
vậy 2013^2014+2011^2012 chia hết 10
chứng minh rằng
102011+8 chia hết cho 72
cho A= 10^2012+10^2011+10^2010+10^2009+8
a, chứng minh rằng A chia hết cho 24
b,A không là số chính phương