Tìm Min của: \(\frac{20}{x^2+y^2}+\frac{11}{xy}\)
cho x,y> 0 và x+y\(\le\) 2
tìm min P = \(\frac{20}{x^2+y^2}+\frac{11}{xy}\)
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge1\)
\(\Rightarrow\frac{20}{x^2+y^2}+\frac{10}{xy}\ge20\)(1)
Có: \(x+y\ge2\sqrt{xy}\Rightarrow1\ge xy\ge\frac{1}{xy}\ge1\)(2)
Từ (1) và (2) \(\Rightarrow\frac{20}{x^2+y^2}+\frac{11}{xy}\ge21\)
Dấu "=" xảy ra \(\Leftrightarrow\int^{x+y=2}_{x=y}\Leftrightarrow x=y=1\)
cho x;y>0 va x+y<=2 tim min cua
\(M=\frac{20}{x^2+y^{^2}}+\frac{11}{xy}\)
\(M=\frac{20}{x^2+y^2}+\frac{11}{xy}=\frac{20}{x^2+y^2}+\frac{22}{2xy}=\frac{20}{x^2+y^2}+\frac{20}{2xy}+\frac{2}{2xy}\)
\(=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}>=20\cdot\frac{4}{x^2+2xy+y^2}+\frac{4}{\left(x+y\right)^2}\)
\(=\frac{80}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}=\frac{84}{\left(x+y\right)^2}>=\frac{84}{2^2}=\frac{84}{4}=21\)
dấu = xảy ra khi \(\hept{\begin{cases}x+y=2\\x=y\end{cases}\Rightarrow x=y=1}\)
vậy min M là 21 khi x=y=1
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Cho các số thực dương x,y,z thỏa mãn x+y+z=3. Tìm min
\(A=\frac{x^{20}}{y^{11}}+\frac{y^{20}}{z^{11}}+\frac{z^{20}}{x^{11}}\)
Các bn giúp mk bài này nhanh nhé! Mk đag cần gấp:
a,Tìm min của P= \(x^4-8x^3+28x^2-48x+35\)
b, Cho x,y>0 và x+y=6. Tìm min của Q= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{100}{xy}+xy\)
a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)
\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)
\(=\left(x^2-4x+6\right)^2-1\)
\(=\left[\left(x-2\right)^2+2\right]^2-1\)
\(\ge2^2-1=3\)
Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)
Đẳng thức xảy ra khi \(x=2.\)
b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)
Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)
Dấu bằng xảy ra khi \(x=y=3.\)
Cho x,y>0. Tìm min của
M=\(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
\(M=\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{\left(\frac{x}{y}+\frac{y}{x}\right)}=t+\frac{1}{t}\)
\(t=\frac{x}{y}+\frac{y}{x}\ge2\)
\(M=t+\frac{1}{t}=\frac{t}{4}+\frac{1}{t}+\frac{3}{4}t\ge2\sqrt{\frac{t}{4}.\frac{1}{t}}+\frac{3}{4}.2=\frac{5}{2}\)
Min M = 5/2 khi x =y
bainay quy đồng 2 cái đầu rồi dùng phương pháp lựa chọn điểm rơi là ra .
Cho x,y >0 và x + y <= 2. Tìm giá trị nhỏ nhất của biểu thức sau:
\(P=\frac{20}{x^2+y^2}+\frac{11}{xy}\)
Cho \(x;y>0\) và \(x+y< =2\) .Tìm GTNN của :\(P=\frac{20}{x^2+y^2}+\frac{11}{xy}\)
Ta có : \(P=\frac{20}{x^2+y^2}+\frac{11}{xy}=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) được \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge\frac{4}{2^2}=1\)
Lại có : \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\ge\frac{4}{2^2}=1\)
Suy ra : \(P\ge20+1=21\)
Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x,y>0\\x+y=2\\x=y\\x^2+y^2=2xy\end{cases}\) \(\Leftrightarrow x=y=1\)
Vậy MIN P = 21 <=> x = y = 1
CHO P=\(\frac{x^2-xy+y^2}{x^2+xy+y^2}\) TÌM MIN và MAX của P