Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Nguyen Tuong Vi
Xem chi tiết
Trần Lê Hà Vy
Xem chi tiết
Minh Hiền
15 tháng 10 2015 lúc 13:18

\(\text{Đặt A=}1+5+5^2+5^3+...+5^{403}+5^{404}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\)

\(=\left(1+5+25\right)+5^3.\left(1+5+5^2\right)+...+5^{402}.\left(1+5+5^2\right)\)

\(=31+5^3.31+...+5^{402}.31\)

\(=31.\left(1+5^3+...+5^{402}\right)\text{chia hết cho 31}\)

=> A chia hết cho 31 => đpcm.

Phạm Trần Châu Đoan
15 tháng 10 2015 lúc 13:19

Vy oi tick cho doan di ma

Huỳnh Thị Minh Huyền
15 tháng 10 2015 lúc 13:37

A = 1 + 5 + 5² + 5³ + ...+ 5^404 = (5^405 - 1)/4

thấy 5³ = 125 chia 31 dư 1 => (5³)^135 = 5^405 chia 31 dư 1 

=> 4A = 5^405 - 1 chia hết cho 31 mà 4 và 31 nguyên tố cùng nhau 

=> A chia hết cho 31 

Carthrine
Xem chi tiết
Hoàng Phúc
15 tháng 2 2016 lúc 16:03

Ghép các số lại

1+5+5^2=31

5^3+5^4+5^5=5^3.(1+5+5^2)=5^3.31

Dễ r đung ko?

nguyễn thọ dũng
Xem chi tiết
Mai The Hong
Xem chi tiết
Trần Thành Minh
6 tháng 8 2015 lúc 16:05

=(1+5+5^2)+...+5^402(1+5+5^2)

=31+...+5^402.31

=31(1+...+5^402) chia hết cho 31 

 

Đào Đức Mạnh
6 tháng 8 2015 lúc 16:04

\(1+5+5^2+...+5^{404}=\left(1+5+5^2\right)+...+\left(5^{400}+5^{401}+5^{402}\right)=31+31.5^3+...+31.5^{400}\)

\(=31\left(1+5^3+5^6+...+5^{400}\right)\)chia hết cho 31

quỳnh
Xem chi tiết
Ngô Tuấn Vũ
1 tháng 11 2015 lúc 10:27

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

Bùi Hồng Thắm
1 tháng 11 2015 lúc 10:24

tất cả đều có trong câu hỏi tương tự

Ngô Tuấn Vũ
1 tháng 11 2015 lúc 10:35

b)

A=(1+5+52)+(53+54+55)+...(5402+5403+5404)

A=31.1+31.53+...+31.5402

A=31.(1+53+...+5402)

=>A chia hết cho 31

=>Đâu phải con ma

 

kazuto kirigaya
Xem chi tiết
Vũ Ngọc Hải Đăng
26 tháng 4 2017 lúc 18:17

Ta có:\(1+5+5^2+\cdot\cdot\cdot+5^{404}\)

      = \(\left(1+5+5^2\right)+\cdot\cdot\cdot+\left(5^{402}+5^{403}+5^{404}\right)\)

      =   \(\left(1+5+25\right)+\cdot\cdot\cdot+\left(5^{402}\cdot1+5^{402}\cdot5+5^{402}\cdot25\right)\)

      =      \(31+\cdot\cdot\cdot+\left(1+5+25\right)\cdot5^{402}\)

      =       \(31\cdot1+...+31\cdot5^{402}\)

      =        \(31\cdot\left(1+...+5^{402}\right)⋮31\)

 Vậy tổng trên chia hết cho 31

Love Aikatsu
Xem chi tiết
Giang Nguyễn
11 tháng 10 2019 lúc 21:19

1 + 5 + 5^2 + ...+ 5^404

= ( 1 + 5 + 5^2 + 5^3) + ( 5^4 + 5^5+5^6+5^7) + ...+ ( 5^401+ 5^402+5^403+5^404)

= 31+ 5^4.31+...+ 5^401.31

= 31(1+5^4 +...+5^404)

=> đpcm

Bùi Diệu An
Xem chi tiết